Optical properties of nanowires

Anna Fontcuberta i Morral Presented by Gozde Tutuncuoglu

Light-matter interaction

ECOLE POLYTECHNIQUE ECOLE POLYTECHNIQUE ECOLE POLYTECHNIQUE

Light-matter interaction

Experimental set-up for PL and Raman spectroscopy

COLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

Components of the set-up

ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANN

Grating type (lines/mm) and angle determine the range of wavelengths to be detected

Sources: www.thorlabs.de, www.microscopyu.com

Our set-up @ EPFL for PL and Raman

Microscope objective

1) The Raman effect

The Raman effect

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNI

Sir Chandrasekhara Venkata Rāman (1888-1970)

Nobel Prize in Physics (1930) for the discovery of what is now called Raman effect

Phonons in crystals

Example: Wurtzite hexagonal structure (In,Al,Ga)N, Zn(O,S), CdSe, ...

Due to crystal symmetry, collective vibrations have specific atomic motions and symmetries

TO: Transverse Optical mode LO: Longitudinal Optical mode 8

Raman selection rules (non-resonant)

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

R. Cusco et. al., Phys. Rev. B 75, 165202 (2007)

The Raman effect

Introductory Raman Spectroscopy, 2003 *Author: John R. Ferraro, Kazuo Nakamoto and Chris W. Brown*

Resonant Raman: determination of band structure

R.Trommer and M. Cardona, PRB 17, 1865 (1978)

The use of Raman spectroscopy in materials science

GaAs and related materials

Case study: crystal structure of GaAs

Zinc Blende E_g (ZB)= 1.517 eV

Can we identify the structures by Raman spectroscopy?

Raman spectroscopy

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne I. Zardo et al PRB (2009) 14

Light-matter interaction

Near-resonant micro raman spectrum of WZ NW part exhibiting E₂^h mode of the WZ structure

> 15 B. Ketterer et al ACS Nano (2011)

Using resonant Raman to obtain the band structure

Using resonant Raman to obtain the band structure

Light-matter interaction

Alloy composition: Al_xGa_{1-x}As

ÉCOLE POLYTECHNIQU Fédérale de Lausanni

Alloy composition: doping (<<0.1%)

The local vibrational mode (LVM) corresponds to Si in the site of AS The intensity of the local vibrational mode is proportional to the concentration of dopants.

Raman spectroscopy

B. Ketterer APL (2010) ²⁰

Alloy composition: doping (<<0.1%)

Raman spectroscopy

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne Silicon mainly incorporated as an acceptor on arsenic sites

Neutral Si-Si pairs form when the total silicon concentration increases

B. Ketterer APL (2010)²¹

From bulk to nano

Anything additional in nanostructures?

InAs NWs on patterned Silicon

Simulations from Esther Alarcon-Lladó

 $I(\lambda) = I \downarrow o \exp(-\alpha z)$

In general: as the coefficient t of absorption a is higher for shorter wavelengths, light with shorter wavelengths is absorbed more towards the surface and longer wavelengths more towards the bulk of the material.

- Spatial distribution of the e-m field depends on:
 - NW morphology (size and shape)
 - Light wavelength •

Raman spectroscopy

FDTD simulation '0 nm .1nm 647 Wavelength 520.8nm 488.0nm

Field intensity

Short λ light is enhanced around the core, while longer λ light resonates around the shell

- Spatial distribution of the e-m field depends on:
 - NW morphology (size and shape)
 - Light wavelength

Short λ light is enhanced around the core, while longer λ light resonates around the shell

Field intensity

Why is it important to enhance unallowed modes?

Method: LO-Phonon-Plasmon Coupling

$$\epsilon(0,\omega) = \epsilon_{\infty} + \frac{\omega_{LO}^2 - \omega_{TO}^2}{\omega_{TO}^2 - \omega^2 - i\gamma\omega} - \frac{\omega_p^2}{\omega^2 + i\Gamma_p\omega}$$

Raman spectroscopy

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Phys. Rev. Lett., 16, 999 (1966) 28

Why is it important to enhance unallowed modes?

Method: LO-Phonon-Plasmon Coupling

$$\epsilon(0,\omega) = \epsilon_{\infty} + \frac{\omega_{LO}^2 - \omega_{TO}^2}{\omega_{TO}^2 - \omega^2 - i\gamma\omega} - \frac{\omega_p^2}{\omega^2 + i\Gamma_p\omega}$$

Conclusions on Raman spectroscopy

In nanostructures one has an additional degree of freedom due to photonic effects.

Interband luminescence

31

Raman spectroscopy ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Interband luminescence

Raman spectroscopy

FÉDÉRALE DE LAUSANNI

From bulk to nano

Observation of strongly polarized PL excitation and emission along the NW axis

Raman spectroscopy

FÉDÉRALE DE LAUSANNE

Surface recombination in nanowires

école polytechnique fédérale de Lausanne

O. Demichel et al Appl. Phys. Lett. 97, 201907(2010)

35

Surface recombination in nanowires

Diameter (nm)

O. Demichel et al Appl. Phys. Lett. 97, 201907(2010)

Polytypism

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Polytypism (picture by 2009)

Polytypism

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Polytypism

FÉDÉRALE DE LAUSANN

D. Spirkoska et al PRB (2009) 40

Direct correlation

<complex-block>

Structure C > Optical

Image: Comparing the second secon

M. Heiss et al PRB (2010) 41

High control on crystal phase quantum dots

4–20 nm zincblende GaAs segments/dots in wurtzite GaAs confine electrons and that the inverse system confines holes.

By varying the thickness of the nanodots strong quantum confinement effects are observed and effective mass of the carriers is extracted..

2015, 15, 2652–2656

Nano Lett.

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne Raman and PL are very powerful & non-destructive optical characterization tools.

We can access to several information about crystal structure, band structure, composition, doping, strain etc. thanks to Raman Spectroscopy.

The combination of micro-PL and TEM can bring valuable insights for the optical characterization of nanostructures.

Bulk characterization techniques should be applied with care in nanoscale since different selection rules, geometric & photonic effects are pronounced.

Special acknowledgements

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

