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A bit of History 
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Fundamental research drove MBE development 
or  
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Early epitaxial techniques 
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Figure 1.9 An example of sliding LPE equipment for growing multiple layer structures
of AlGaAs and GaAs. The substrate is held in a small declivity in the graphite base while
appropriate solutions are contained in a sequence of wells which can be brought over the
substrate in turn. (From Orton 2004.)

(1973), who used yet another version of multilayer LPE based on rotation rather than
sliding and, independently, from Hayashi (1972) at Bell Labs (see Panish et al. 1973).
Threshold current densities, having started at some 100 kA/cm2, were now down to a
few hundred amps per square centimetre, and the GaAs laser was, at last, a commercially
viable entity. There was more work to be done in controlling optical beam properties but
the main challenge facing the LPE grower had successfully been met. However, as we
have already indicated, yet another light-emitting device was placing parallel demands
on the crystal growers’ skills.

GaAs electroluminescent diodes had been under investigation from the early days of
III-V materials development, based almost entirely on bulk n-type samples, back-doped
by the diffusion of zinc. As we commented above in relation to GaAs lasers, it was
natural to explore the virtues of LPE material in so far as its improved purity might
result in greater luminescence efficiency but Ruprecht (1966) of IBM demonstrated yet
another example of LPE’s virtues by making use of the amphoteric doping behaviour
of silicon in GaAs. In stoichiometric material, silicon substitutes largely on the gallium
site and behaves as a donor while, under arsenic-deficient conditions, it substitutes for
arsenic and behaves as an acceptor. In gallium solution growth, as GaAs is deposited,
the solution becomes gradually depleted of arsenic so, while initially silicon may act
as a donor, later in the process it gradually takes on an acceptor preference, forming
a relatively wide, compensated p-type region. Electron injection into this compensated
layer gives rise to radiation at an energy some 0.1 eV below the band gap energy, a
difference great enough to minimise reabsorption. Ruprecht grew these structures on a
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Figure 1.5 Apparatus for the growth of pure epitaxial layers of GaAs by the
arsenic trichloride VPE method. Pure hydrogen is bubbled through liquid AsCl3
before passing over a boat containing liquid gallium at a temperature of 800 ◦C.
A polished GaAs substrate is held further downstream at a temperature of 750 ◦C.
Reproduced by permission of The Electrochemical Society.

reversing the temperature gradient in the reactor, thus raising the substrate temperature
to 900 ◦C. Then, lowering this to 750 ◦C allowed growth on the newly etched surface.
Such careful attention to detail resulted in films with room temperature mobilities as
high as 0.88 m2 V–1 s–1 and a mobility at 77 K of 3.8 m2 V–1 s–1, the highest value re-
corded at that time. (In fact, this represents material with a total impurity concentration
of 1022 m–3 and a compensation ratio NA:ND of about 0.8—see e.g. Blood and Orton
1992, p. 103). Experiments using both selenium and tin dopants resulted in n-type dop-
ing levels of up to 3 × 1024 m–3, illustrating the versatility of this growth method for
future device applications. At that time, Plessey workers were interested in growing ma-
terial for high-voltage diodes and for FETs, both of which were to come to fruition,
but the subsequent impact of the Gunn diode was to introduce yet another demand on
crystal growers, as we shall see in a moment. However, before proceeding with this, we
should mention one further perturbation to the progress of VPE.

Just one year later, in 1966, Tietjen and Amick (1966), at RCA, reported an
alternative approach to the VPE growth of GaAs and GaP. (In fact, they grew sam-
ples of GaAs1–xPx covering the range x = 0 to x = 0.7.) Instead of using AsCl3 (or

VPE LPE 

50’s: tremendous improvement in single crystal quality  

VPE : mostly homoepitaxy, with dopant control (transistors, Gunn diode) 
LPE : alloy epitaxy (AlGaAs), and then first heterostructures (lasers) 
 
Very poor control of the layer thickness (~µm) 
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Superlattice and Negative Differential Conductivity
in Semiconductors*

Abstract: We consider a one-dimensional periodic potential, or "superlattice," in monocrystalline semiconductors formed by a periodic
variation of alloy composition or of impurity density introduced during epitaxial growth. If the period of a superlattice, of the order
of looA, is shorter than the electron mean free path, a series of narrow allowed and forbidden bands is expected due to the subdivision
of the Brillouin zone into a series of minizones. If the scattering time of electrons meets a threshold condition, the combined effect of the
narrow energy band and the narrow wave-vector zone makes it possible for electrons to be excited with moderate electric fields to an
energy and momentum beyond an inflection point in the E-k:relation; this results in a negative differential conductance in the direction
of the superlattice. The study of superlattices and observations of quantum mechanical effects on a new physical scale may provide a
valuable area of investigation in the field of semiconductors.

Introduction
We consider theoretically a one-dimensional periodic po-
tential, or "superlattice," in monocrystalline semiconduc-
tors. This superlattice potential would be obtained by a
periodic variation of alloy composition or of impurity
density introduced during epitaxial growth. This technique
would enable one to vary arbitrarily the amplitude and
periodicity of the superlattice potential over a range of
values, although one period probably could not be made
much shorter than tOOA (about 20 times as long as the
lattice constant of the host crystal). If this distance, which
is comparable to the junction width in a tunnel diode,' is
shorter than the electron mean free path, one may
expect to observe strong energy dispersion effects in the
proposed structure. These effects would allow observation
offamiliar quantum mechanical properties in a new domain
of physical scale, due to very narrow allowed and for-
bidden energy bands associated with a series of minizones
in the Brillouin zone, not seen in the host crystal. It should
be possible to obtain a novel class of man-made semicon-
ductor materials, at least as far as electronic properties
are concerned, and one expects the properties to depend
not only on the band parameters of the host crystal, but
also on the characteristics of the superlattice.

We have analyzed the dynamics of conduction electrons
in a superlattice structure which, we think, is realizable
with techniques described here. Although the one-dimen-

The authors are located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598.

* Research sponsored in part by the Army Research Office. Durham.
North Carolina under Contract DAHC04-69-C-0069.

sional lattice per se is an elementary subject, the results
contain important implications for the direction of experi-
mental effort. We have found that, in the direction of the
superlattice (perpendicular to the superlattice planes), the
narrow wave-vector zones and the narrow energy bands
make it possible for electrons to be excited beyond the
energy corresponding to an £-vs.-k inflection point with
moderate electric fields. The resulting negative conduc-
tance could lead to new ultra-high-speed devices.t These
deviceswould have virtually no frequency limitation except
when the energy quantum for the frequency involved is a
significant fraction of the width of the narrow energy band.
Since the potentials envisioned are small compared with
band gap energies of the host semiconductors, and since
the properties depend on a sustained periodic variation,
the structure should be viewed as a perturbed bulk crystal
rather than as a series of junctions.

Materials
The achievement of a well-defined superlattice structure
with a period of, say, lOoA will require considerable effort
even with the use of the most advanced epitaxial thin-film
technologies. The materials should be well-known semi-
conductors and their alloys; for examples, Ge, Si, Ge-Si
alloys, III-V compounds and their alloys, II-VI com-

t H. Kromer proposed using the heavy hole band in Ge, Si and other
semiconductors for a negative mass amplifier, wherein transverse effective
masses were said to become negative for excited electrons (actually holes)
[Phys. Rev. 109. 1856 (1958)J. Application of the effect. however. has not
turned out to be practical. 61
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The Esaki and Tsu proposal 

Building heterostructures with 
characteristic size lower than the 
electron mean-free path λ 

Entering the quantum regime 

λ = τv

The wavefunction phase is well-defined: 
•  For times shorter than τ
•  For lengths shorter than λ
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L. Esaki 

FIG. 2. Schematic illustration of a "mesoscopic" quantum regime (hatched) 
with a superlattice or quantum wells in the insert. 

electronic properties of quasi-two-dimensional character (1) (2). Figure 
3 shows the density of states p(E) for electrons with m* = 0.0671llo in an 

0 

SL with a well width of 1 OOA and the same barrier width, where the first 
three subbands are indicated with dashed curves. The figure also 
includes, for comparison, a parabolic curve E112 for 3D, a steplike density 
of states for 2D (quantum well), a curve (E- Ern- En)- 112 for lD 
(quantum wire), and a delta function f8(E- E,- Ern- En) for OD 

0 

system (quantum dot) where the quantum unit is taken to be lOOA for 
all cases and the barrier height is assumed to be infinite in obtaining the 
quantized energy Ievels, E" Ern and En. N otice that the ground state 
energy increases with decrease in dimensionality if the quantum unit is 
kept constant. Bach quantized energy Ievel in 2D, 1D and OD is identi-
fied with the one, two and three quantum numbers, respectively. The 
unit for the density of states here is normalized to eV- 1cm- 3 for all the 
dimensions, although eV- 1cm- 2, eV- 1cm- 1 and eV- 1 may be commonly 
used for 2D, lD and OD, respectively. 
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τ : scattering time 
v : (thermal or Fermi) velocity  
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Figure 6.4 Schematic plot of the one-dimensional E-k
diagram for a typical AlGaAs/GaAs superlattice, showing
the formation of mini-bands. Whereas electrons in bulk
GaAs are confined to the bottom of the Γ conduction band,
those in the lowest mini-band may readily achieve energies
to take them above the inflection point, resulting in negative
differential resistance.
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Figure 6.5 Electron velocity-field curve as calculated by
Esaki and Tsu for the case of a typical AlGaAs/GaAs superlattice
(arbitrary units). The peak field Fmax satisfies the condition
eFmaxτd/ (h/2π) ~ 1.

Electron transport in superlattices 

L. Esaki 

unprecedented properties. The advanced techniques ofthin-film growth 
have facilitated engineering for designed quantum structures. 

In 1969, research on such structures was initiated with a proposal 
of an engineered semiconductor superlattice by Esaki and Tsu (1) (2). In 
anticipation of advancement in epitaxy, two types of superlattices were 
envisioned, with alternative deposition of ultrathin layers: Doping and 
compositional, as shown at the top and bottom of Fig. 1, respectively. 

Since the one-dimensional potential is introduced along with the 
superlattice (SL) axis (perpendicular to the deposited plane layers), we 
thought that, if our attempt was successful, elegantly simple examples in 
one-dimensional quantum physics, for instance, resonant electron 
tunneling (3), Kronig-Penney band model or Stark localization, which 
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FIG. 1. Spacial variations of the conduction and valence bandedges in two types 
of superlattices: doping (top) and compositional. 
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and

boundary could be a dominant factor in the case of small
amplitude of the periodic potential. If, however, the ampli-
tude VI is of the order of O.leV and the applied field is
of the order of 103V/cm, the tunneling probability can
be kept negligibly small. If the electron scattering time is
sufficiently long, electrons will undergo rf oscillation due
to the reflection at the minizone boundaries, the so-called
"Bloch oscillation." This occurs for eFrd/lt > 211", which
is several times the threshold value for negative conduct-
ance. The frequency of the Bloch oscillator is eFd/h = 250
GHz for F = 103V/ em and d = 100 A. The scattering
time then should be greater than 4 psec.

Discussion
In obtaining the solutions for the average drift velocity,
Eqs. 4 and 6, we made two assumptions; namely, that
k; = eFt/lt and that r is time-independent. The former
assumption implies that k; = 0 at t = 0, which is justifiable
in relatively lightly doped semiconductors." The latter
assumption is a reasonable approximation in the case in
which the allowed band width is made narrow. In the two
examples, m = 0.025mo and 0.07mo, the smaller mass
case requires an electron temperature close to 1000oK,
whereas the larger mass case requires only 100oK, to
reach the negative differential conductivity region. This
electron temperature, which is also a function of the ampli-
tude and the profile of the periodic potential, could be
kept very low with proper design of the structure. In such
cases the specimen could be operated with low electric
fields at cryogenic temperatures; lower temperatures are
helpful in obtaining longer scattering times.

Using the Heisenberg uncertainty principle we estimated
the values of electron scattering time r and the mean free
path I that are required for these quantum mechanical
effects. For t:.E = O.1EI = 0.003 eV and Sk = O.lkd =
3 X 105 ern-I, the inequalities are I 330A and r 0.22
psec. This indicates that the mean free path should be at
least three times as long as the superlattice spacing. The
scattering time here is about one-third of that previously
estimated for obtaining a negative differential conductance.

The scattering time is an important factor in the effects
described and more-detailed calculations are being made
to verify the model. If the superlattice were perfect, the
scattering time would be infinite, as is the case with an
ideal crystal lattice. Small deviations from the perfect
periodic potential, even when the long-range order is pre-
served, act as localized scattering centers. If the super-
lattice structure is prepared by a periodic variation of
alloy composition, there will be unavoidable random varia-
tions in the magnitude of the thereby introduced super-
lattice potential maxima (at x = d/2,3d/2, ... ). However,
the probability density of conduction electrons in the
superlattice structure of the sinusoidal potential indicates
that electrons in the conduction band would be bunched

1.51.00.5

0.2

The function 1m is plotted in Fig. 4 for k j k d = 0.82 (y =
0.667) and 0.50 ('Y = 1.85). These curves also indicate the
existence of negative conductance, but the threshold value,

0.4 or eFrd/h 1.26 for the top curve, is slightly
greater than for the sinusoidal E-k relation. Since the
inflection point is shifting toward the minizone boundary,
it is understandable that higher fields or longer scattering
times are required to obtain negative conductance.

As the applied voltage is increased, however, effects such
as Zener tunneling, avalanching and impact ionization set
in; eventually the negative conductance would be offset
by these effects. The possibility of Zener tunneling to the
second minizone when electrons reach the first minizone

--f<O

condition can be achieved with an electric field strength
F = 103 V/em and a scattering time r = 0.67psec.

For small 'Y, when E(k) is not a sinusoidal function,
the E-k relation was approximated by sections of two
parabolas of opposite curvature, joined at the inflection
point (E;, k;). For the average drift velocity in this case
we obtained

Figure 4 Drift velocity amplitudes as functions of the
reduced parameter = 2eFrd/h == k-fk«: (a) sinusoidal
potential; (b) periodic square-well potential for k,/k. =
0.5; and (c) periodic square-well potential for k,/k. =
0.82. Here k, is the wave vector at the inflection point of
the E-k curve. Arrows indicate the peaks of the drift
velocity functions.

j et ) = t[l + 2k d sinh (kjkdO
<; <; k d - k , exp - I

- k d exp (-k;/kdO]' (7)
k d - k i
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Superlattice and Negative Differential Conductivity
in Semiconductors*

Abstract: We consider a one-dimensional periodic potential, or "superlattice," in monocrystalline semiconductors formed by a periodic
variation of alloy composition or of impurity density introduced during epitaxial growth. If the period of a superlattice, of the order
of looA, is shorter than the electron mean free path, a series of narrow allowed and forbidden bands is expected due to the subdivision
of the Brillouin zone into a series of minizones. If the scattering time of electrons meets a threshold condition, the combined effect of the
narrow energy band and the narrow wave-vector zone makes it possible for electrons to be excited with moderate electric fields to an
energy and momentum beyond an inflection point in the E-k:relation; this results in a negative differential conductance in the direction
of the superlattice. The study of superlattices and observations of quantum mechanical effects on a new physical scale may provide a
valuable area of investigation in the field of semiconductors.

Introduction
We consider theoretically a one-dimensional periodic po-
tential, or "superlattice," in monocrystalline semiconduc-
tors. This superlattice potential would be obtained by a
periodic variation of alloy composition or of impurity
density introduced during epitaxial growth. This technique
would enable one to vary arbitrarily the amplitude and
periodicity of the superlattice potential over a range of
values, although one period probably could not be made
much shorter than tOOA (about 20 times as long as the
lattice constant of the host crystal). If this distance, which
is comparable to the junction width in a tunnel diode,' is
shorter than the electron mean free path, one may
expect to observe strong energy dispersion effects in the
proposed structure. These effects would allow observation
offamiliar quantum mechanical properties in a new domain
of physical scale, due to very narrow allowed and for-
bidden energy bands associated with a series of minizones
in the Brillouin zone, not seen in the host crystal. It should
be possible to obtain a novel class of man-made semicon-
ductor materials, at least as far as electronic properties
are concerned, and one expects the properties to depend
not only on the band parameters of the host crystal, but
also on the characteristics of the superlattice.

We have analyzed the dynamics of conduction electrons
in a superlattice structure which, we think, is realizable
with techniques described here. Although the one-dimen-

The authors are located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598.

* Research sponsored in part by the Army Research Office. Durham.
North Carolina under Contract DAHC04-69-C-0069.

sional lattice per se is an elementary subject, the results
contain important implications for the direction of experi-
mental effort. We have found that, in the direction of the
superlattice (perpendicular to the superlattice planes), the
narrow wave-vector zones and the narrow energy bands
make it possible for electrons to be excited beyond the
energy corresponding to an £-vs.-k inflection point with
moderate electric fields. The resulting negative conduc-
tance could lead to new ultra-high-speed devices.t These
deviceswould have virtually no frequency limitation except
when the energy quantum for the frequency involved is a
significant fraction of the width of the narrow energy band.
Since the potentials envisioned are small compared with
band gap energies of the host semiconductors, and since
the properties depend on a sustained periodic variation,
the structure should be viewed as a perturbed bulk crystal
rather than as a series of junctions.

Materials
The achievement of a well-defined superlattice structure
with a period of, say, lOoA will require considerable effort
even with the use of the most advanced epitaxial thin-film
technologies. The materials should be well-known semi-
conductors and their alloys; for examples, Ge, Si, Ge-Si
alloys, III-V compounds and their alloys, II-VI com-

t H. Kromer proposed using the heavy hole band in Ge, Si and other
semiconductors for a negative mass amplifier, wherein transverse effective
masses were said to become negative for excited electrons (actually holes)
[Phys. Rev. 109. 1856 (1958)J. Application of the effect. however. has not
turned out to be practical. 61
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At that time… 

Surface Physics 

Fig. 2. As
!
/Ga molecular beam #ux ratio as a function of sub-

strate temperature when the transition between As- and Ga-
stabilized structure occurs. Since there is hysteresis in the
transitions, two sets of curves are shown.

Fig. 3. E!usion cell used for Cs ion beam experiment for ion
propulsion in 1964.

Foxon, Harvey, and Joyce on measurements of the
adsorption lifetime, sticking coe$cient, and reac-
tion order, giving insight into the interaction of Ga
and As

"
beams on GaAs surfaces [5,6]. However,

the construction of the surface phase diagram of
GaAs, by observing the As-stabilized and Ga-sta-
bilized surface structures with high energy electron
di!raction (HEED), was the beginning of control-
led epitaxial growth of GaAs thin "lms [7}9] as
shown in Fig. 1. Fig. 2 shows that the surface struc-
ture changes as a function of the substrate temper-
ature and relative #uxes of As and Ga incident
upon the surface. The conversion of surface struc-
tures implied a change in surface composition which
was used to construct the `surface phase diagramsa.
When I "rst presented the reconstruction of surface
structures in 1970, I met tremendous opposition
and resistance in the surface physics community. At
that time, surface reconstruction was considered in
terms of impurity atoms sitting on the surface of the
crystal. It was very di$cult for the community to
accept the concept that intrinsic atoms on the sur-
face will reconstruct themselves into a di!erent
surface net.

In the early experiments, it was thought that
equilibrium evaporation was important. Knudsen

cell design with a pinhole aperture of less than
1 mm in diameter was used. The cells were quartz
ampules with tungsten wire wound over the am-
pules and heated by a variac. This con"guration
was satisfactory for surface physics studies, but not
desirable as a "lm growth e!usion cell because the
deposition rate from the pinhole was limited to less
than one atomic layer per minute. A major ad-
vancement occurred in 1969 when I applied the
previous knowledge of `ion propulsion techno-
logya to our experiment. The e!usion cells were
changed to large aperture graphite and alumina
construction with heat shielding consisting of
layers of corrugated tantalum foil to reduce the
heat loss and temperature cross talk with adjacent
cells. All cells were surrounded with a liquid nitro-
gen cooled shroud to reduce the background pres-
sure. The cell temperatures were also regulated by
negative electronic feedback systems to assure
precise e!usion #uxes. These concepts were all
knowledge borrowed from the `ion propulsion
technologya. Fig. 3 shows a tantalum heat shielded
cesium ion emitter mounted on a 2-3/4 in stainless
steel #ange used in the 1964 ion beam experiment
[10]. This is to be compared to today's standard
MBE e!usion cell, for example, by EPI shown in
Fig. 4. An arsenic cracker cell was "rst used in 1971
for the production of As

!
to improve the photo-

luminescence e$ciency [11]. High energy electron
di!raction (HEED) became a routine real-time

A.Y. Cho / Journal of Crystal Growth 201/202 (1999) 1}7 3

Cs effusion cell for experiments on ion propulsion 

Al Cho 
Bell Labs 

•  Development of effusion cells 
Spatial technologies 

MBE deserves a place in the 
history books
W. PATRICK MCCRAY
is at the Center for Nanotechnology in Society, University of California, Santa Barbara, California 93106, USA.
e-mail: pmccray@cns.ucsb.edu

Molecular beam epitaxy is widely used in research and industry to make semiconductor devices 
and structures. However, despite its ability to control matter with near-atomic precision, the 
technique is overlooked in most histories of nanoscience and nanotechnology.

I
t is common to read that 
nanotechnology began in December 
1959 when Richard Feynman delivered 
a talk with the title “Th ere’s plenty of 
room at the bottom”1. According to this 

version of events, Feynman’s foresight was 
confi rmed when Gerd Binnig and 
Heinrich Rohrer invented the scanning 
tunnelling microscope (STM) in 1981, 
with the atomic force microscope 
following fi ve years later2. Finally, 
nanotechnology really took off  in the 
late 1990s when governments around 
the world started investing hundreds of 
millions of dollars in the fi eld.

However, as a number of historians 
have pointed out, the history of 
nanotechnology is more complicated 
than this: Feynman’s lecture, for 
example, was initially much less 
influential than is widely believed3,4. 
Simple histories of nanotechnology also 
tend to overlook some experimental 
techniques: molecular beam epitaxy 
(MBE), for instance, played a central 
role in the growth and development of 
nanoscience and nanotechnology, yet
it is rarely mentioned in popular or 
historical accounts.

Put most simply, MBE allows 
researchers to make new materials and 
nanostructures by, in the words of the 
The New York Times, “spray painting…
with atoms”5. Pure sources of material 
are vaporized in separate ovens, and 
the atoms or molecules released by the 
sources are transported as a ‘beam’ to 
a substrate, where they are deposited. 
By varying the source materials and 
controlling the release of the atoms and 
molecules, scientists can build — one 

atomic layer at a time — nanostructures 
with precisely controlled compositions.

Compared with other deposition 
techniques, MBE is relatively slow, 
depositing as little as a nanometre or so 
of material per minute and requiring 
a much higher vacuum and more 

stringent control of impurities. However, 
its leisurely rate is also an advantage, 
allowing for the ordered growth of 
crystalline films. In fact, the word 
‘epitaxy’ comes from the Greek for ‘above’ 
(epi) and ‘in an ordered manner’ (taxis).

The origins of MBE lie in the 
convergence of a number of research 
areas including solid-state physics, 
surface physics and materials science in 
the early 1950s. In 1954, for example, two 
years after finishing his physics doctorate 
at the University of Göttingen, 
Herbert Kroemer had a post at the 
Central Telecommunications Laboratory 
run by the German Postal Service in 
Darmstadt. As the theorist in a small 
semiconductor research group, he 
proposed “a non-stoichiometric mixed 
crystal of different semiconductors with 
different energy gaps”6. Several years 
later, working for American firms 
like RCA and Varian, Kroemer 
suggested several ways to exploit 
heterostructures made of two different 
semiconducting materials.

Almost four decades later, after 
sharing the 2000 Nobel Prize in 
Physics for his work on semiconductor 
heterostructures, Kroemer remarked 
that his lab managers at the time had 
found it difficult to envisage short-term 
applications for his ideas, partly because 
researchers were unable to fabricate the 
materials needed to translate the ideas 
into real devices. “I promised myself 
that if a new technology for building 
heterostructures arose,” he recalled, 
“I’d get back into it”7. Kroemer’s patience 
would be rewarded, but he had to wait for 
more than a decade.
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Figure 1 Al Cho (right) and Charles Radice working 
on an early MBE machine at Bell Labs in 1970. 
Although MBE was invented before the scanning 
tunnelling microscope and has had a major impact 
on both research and industry, it features much less 
prominently in accounts of the history 
of nanotechnology.
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•  LN2 cryoshroud 
•  PID temperature controller 
•  Load-lock 

•  Atomic adsorption studies 
•  HEED/LEED 
•  UHV 
•  Substrate preparation 

Fig. 1. High energy electron di!raction (HEED) patterns of (1 0 0) GaAs and the corresponding electron micrographs (38400X) of Pt}C
replicas of the same surface.

2 A.Y. Cho / Journal of Crystal Growth 201/202 (1999) 1}7

HEED GaAs substrate 

A historic photograph of an early custom-built MBE machine. This
was the first machine built at the Mullard Research Laboratories in
Redhill (circa 1975) and owes a great deal to the design skills of Jim
Neave and the technical abilities of the MRL Engineering Division.
It was used for mass-spectrometry studies of MBE growth of GaAs,
as described in chapter 4 (section 4.2).

MBE development 

MRL 1975 



1972: Esaki and Chang 
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Figure 6.6 Experimental current–voltage characteristic of a 7 nm
period AlGaAs/GaAs superlattice measured with 100 ns voltage pulses
with a 10 kHz repetition rate. The observed negative resistance results
from the negative electron effective mass associated with conduction in
the first one-dimensional superlattice mini-band. (From Chang et al.
1973b.) Reproduced with permission from Chang, L L, Esaki, L,
Howard, W E and Ludeke, R (1973a) J Vac Sci Technol 10, 11.
Copyright 1973, AIP Publishing LLC.

which could very reasonably be regarded as representing success, given all the difficulties
involved in both calculation and experimental realisation.

To control the quality of their GaAs and AlGaAs films, the IBM group employed the
same SEM technique as used by Cho at Bell labs to check surface quality, and RHEED
measurements to confirm surface reconstruction, under appropriate growth conditions.
They measured Hall mobility vs doping level on a set of GaAs films, obtaining results
only marginally less good than published data on LPE samples. They measured cath-
odoluminescence at low temperatures, finding line widths and luminescence intensities
also comparable with LPE samples. They used Raman scattering to show the phonon
spectra appropriate to both GaAs and AlGaAs in a superlattice structure. They were
unable to obtain TEMmicrographs of their structures because the necessary techniques
were not then available to them but X-ray scattering measurements and a combination
of argon ion sputtering and Auger electron spectroscopy were both employed to confirm

Measurement of negative resistance in AlGaAs/GaAs SL (70 Å period) 

A measurable quantum effect ! 

Esaki and Chang built their own system at IBM 



1974 : Resonant tunneling in double-barriers  

Chang, Esaki and Tsu 

Esaki 8 

coefficient T*T as a function of electron energy for double, triple, and 

quintuple barrier structures from the tunneling point of view, as shown 

in Fig. 4, leading to the derivation of the current-voltage characteris-

tics. Note that the resonant energies for the triple-barrier case consist 

of a doublet, and those for the quintuple barrier are a quadruplet. In 

the double-well case, each single-well bound state is split into a symme-

tric combination and an asymmetric one. The superlattice band model 

previously presented, assumed an infinite periodic structure, whereas, in 

reality, not only a finite number of periods is prepared with alternating 

epitaxy, but also the electron mean free path is limited. Thus, this 

multi barrier tunneling model provided useful insight into the transport 

mechanism. 

In early 1974, Chang, Esaki and Tsu

24 

observed resonant tunnel-

ing in double-barriers, and subsequently, Esaki and Chang

25 

measured 

quantum transport properties for a superlattice having a tight-binding 

potential. The I-V and dl -dV versus V characteristics are shown in Fig. 
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Figure 6.13 Absorption spectra measured at 2 K on a series of Al0.2Ga0.8As/GaAs square quantum
wells with various well widths, showing, in (a), clear evidence of ∆n = 0 exciton transitions for
n = 1, 2, 3 and 4 confined states and, in (b), the splitting of the n = 1 transitions due to the different
confinement energies of the light- and heavy-hole states. (From Dingle 1975, courtesy Springer).

Table 6.3 Effective masses used in calculating confinement energies in AlGaAs/GaAs QWs.

GaAs AlGaAs

me/m0 mlh/m0 mhh/m0 me/m0 mlh/m0 mhh/m0

Dingle et al. 0.067 0.080 0.45 0.067 0.08 0.45
‘Modern’ values 0.067 0.094 0.34 0.092 0.11 0.46

case equations (6.7) and (6.8) can be written in the simpler form

eVw = En sec2
[
(π/2)(En/E1

∗)1/2
]

(6.7A)

and

eVw = Encosec2
[
(π/2)(En/E1

∗)1/2
]

(6.8A)

It is effectively these equations which they used to analyse their data.
The modelling, as we said earlier, resulted in an excellent agreement with experimen-

tal data over a range of nine samples with well widths ranging from 7 nm to 40 nm and
encompassing up to seven pairs of confined states. The value of Qv derived from the
model was 0.12 in the first instance (Dingle et al. 1974) but was modified to 0.15 in
Dingle (1975) and this gave rise to much discussion over the following years as evidence

Absorption AlGaAs/GaAs QW  

Dingle et al. PRL  

Direct visualization of quantum effect due to confinement 

At Bell Labs 



2D electron gas 
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AlGaAs GaAs

E1
E2

2DEG

CB

EF

Spacer -
undoped

Space charge

Si donors

Figure 6.23 Conduction-band energy of an AlGaAs/GaAs
heterojunction, showing the formation of a 2DEG. Electrons
from the silicon donors in the AlGaAs transfer to the GaAs
and are trapped close to the interface, where they fill all
confined states up to the Fermi level EF. Two confined energy
states, E1 and E2 are indicated.

structure involved—see e.g. the discussion in Weisbuch and Vinter 1991, Section II.8).
This was the structure which was to set the standard for a great many 2DEG (and two-
dimensional hole gas—2DHG) studies to be reported over the next three decades—it
consisted of about 3 µm of undoped GaAs grown on a semi-insulating substrate, fol-
lowed by 3 µmof AlxGa1-xAs (x= 0.25 – 0.3, doped with 1024 m–3 Si) and a thin cap layer
of undoped GaAs (0.02 µm) which was fully depleted of carriers. Störmer et al. were
particularly concerned with identifying the two-dimensional nature of the ‘electron gas’
by means of the Shubnikov–de Haas effect and cyclotron resonance measurements. The
former is a magneto-quantum-effect which results in an oscillatory variation in sample
resistance as a function of applied magnetic field. It is closely related to the quantum Hall
effect (which we discuss below) and, as outlined in Box 6.5, it reflects periodic transi-
tions of the electron Fermi level between Landau levels as the magnetic field is increased.
Störmer et al. observed two Shubnikov–de Haas frequencies which demonstrated the
electron occupation of two confined states within the quantum well and from which
they estimated the corresponding areal densities as 1.4× 1016 m–2 and 2.0× 1015 m–2,
respectively, in reasonable agreement with the total density of 1.2× 1016 m–2 obtained
from Hall measurements. To prove that they were, indeed, measuring a two-dimensional
gas, they explored the effect of changing the angle between the field direction and the
normal to the interface plane. In the usual three-dimensional case, there is no change
in the oscillations as a function of angle, whereas, for the 2D case, because the gas is
already quantised by the electrostatic well, only the normal component of magnetic field
is relevant and this gives rise to a cos θ dependence on angle. Cyclotron resonance ab-
sorption was consistent with an electron effective mass some 12% larger than the value
of 0.067m0 appropriate to GaAs, an enhancement they attributed to non-parabolicity
of the GaAs conduction band (the electron Fermi level lying 140 meV above the GaAs
band edge at the interface; see e.g. Nelson 2001).

•  Remote doping (1981) 
 spacer layer thickness 

•  Inverted interface (1981) 

in the 10 to 100 nm range and an areal QD density around
10 !m!2.

The microdisks [Fig. 1(b)] are obtained by electron beam
lithography followed by a two-step chemical etching as
described in Ref. [26]. Within such microdisks, WGM can
establish: they are vertically confined by the large index
contrast between semiconductor and air and guided along
the disk circumference by total internal reflection [27].

Photoluminescence measurements are performed at a
cryogenic temperature using a cold-finger helium cryostat.
The excitation beam is delivered by a continuous wave
Ti:sapphire laser (energy 1750 meV) focused with a micro-
scope objective (numerical aperture 0.5) onto a 2 !m
diameter excitation spot. The emission, collected at normal
incidence by the same objective, is dispersed and detected
with a N2-cooled Si-CCD camera with a 80 !eV spectral
resolution.

Figures 2(a) and 2(b) show emission spectra measured
on two different microdisks at various temperatures. The
spectra in Fig. 2(a) are performed at high excitation power
in the density regime where QD lasing occurs in a single
WGM and no heating due to the excitation power is
observed. The spectra in Fig. 2(b) are measured at low
excitation power on a microdisk presenting a well-isolated
single QD X line as shown in the inset. Both X and WGM
spectral shifts with temperature are summarized in
Fig. 2(c). The QD X energy shift with temperature is
identical to the bulk GaAs X as shown in Fig. 2(c) and in
agreement with both theoretical and previously measured
values [28]. The redshift of the optical mode with tempera-
ture is due to refractive index variation and is identical to
the one reported for similar microdisks [9]. The QD X line
exhibits a stronger spectral shift with temperature than the
WGM. These measurements show that temperature scan-
ning allows one both to distinguish X versus WGM emis-
sion lines and to tune a QD exciton with respect to a lower
energy WGM.

Figure 3 presents the spectra on a logarithmic scale
obtained on another single microdisk for various tempera-

tures and a low excitation power of 4 !W. The observed
photoluminescence lines correspond either to the emission
of QD X or to the emission of a small background within a
WGM. Five optical modes are clearly identified (dotted
lines) since they present the same spectral shift with tem-
perature as the one reported in Fig. 2(c). The presence of
5 WGM within a 10 meV spectral window is consistent
with the number of modes expected for a 2 !m diameter
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FIG. 2. (a),(b) Photoluminescence spectra (vertically shifted
for clarity) measured on two different microdisks between 7
and 45 K. The insets present larger energy scale spectra at the
lowest temperature. (c) Spectral shift vs temperature deduced
from (a) and (b). Also indicated is the spectral shift of the GaAs
bulk exciton.
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FIG. 3. Photoluminescence spectra (vertically shifted for
clarity) on a single microdisk at various temperatures from 4
to 51 K. The dotted (dashed) lines are guides to the eye to follow
the emission energy of WGMs (QD Xs). Solid lines follow
spectral shifts different from both a quantum dot and an optical
mode spectral shift.
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Al0.33Ga0.67As
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FIG. 1. (a) Schematic of a monolayer fluctuation QD.
(b) Scanning electron microscopy side view of a 2 !m diameter
microdisk. (c),(d) STM images of both interfaces just after the
growth interruption. The color changes correspond to one
(Al,Ga)As monolayer change in height.
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067401-2

•  Temperature and As pressure control (1985) 

In 1978, µ ~104 cm2/V.s 
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Figure6.23Conduction-bandenergyofanAlGaAs/GaAs
heterojunction,showingtheformationofa2DEG.Electrons
fromthesilicondonorsintheAlGaAstransfertotheGaAs
andaretrappedclosetotheinterface,wheretheyfillall
confinedstatesuptotheFermilevelEF.Twoconfinedenergy
states,E1andE2areindicated.

structureinvolved—seee.g.thediscussioninWeisbuchandVinter1991,SectionII.8).
Thiswasthestructurewhichwastosetthestandardforagreatmany2DEG(andtwo-
dimensionalholegas—2DHG)studiestobereportedoverthenextthreedecades—it
consistedofabout3µmofundopedGaAsgrownonasemi-insulatingsubstrate,fol-
lowedby3µmofAlxGa1-xAs(x=0.25–0.3,dopedwith1024m–3Si)andathincaplayer
ofundopedGaAs(0.02µm)whichwasfullydepletedofcarriers.Störmeretal.were
particularlyconcernedwithidentifyingthetwo-dimensionalnatureofthe‘electrongas’
bymeansoftheShubnikov–deHaaseffectandcyclotronresonancemeasurements.The
formerisamagneto-quantum-effectwhichresultsinanoscillatoryvariationinsample
resistanceasafunctionofappliedmagneticfield.ItiscloselyrelatedtothequantumHall
effect(whichwediscussbelow)and,asoutlinedinBox6.5,itreflectsperiodictransi-
tionsoftheelectronFermilevelbetweenLandaulevelsasthemagneticfieldisincreased.
Störmeretal.observedtwoShubnikov–deHaasfrequencieswhichdemonstratedthe
electronoccupationoftwoconfinedstateswithinthequantumwellandfromwhich
theyestimatedthecorrespondingarealdensitiesas1.4×1016m–2and2.0×1015m–2,
respectively,inreasonableagreementwiththetotaldensityof1.2×1016m–2obtained
fromHallmeasurements.Toprovethattheywere,indeed,measuringatwo-dimensional
gas,theyexploredtheeffectofchangingtheanglebetweenthefielddirectionandthe
normaltotheinterfaceplane.Intheusualthree-dimensionalcase,thereisnochange
intheoscillationsasafunctionofangle,whereas,forthe2Dcase,becausethegasis
alreadyquantisedbytheelectrostaticwell,onlythenormalcomponentofmagneticfield
isrelevantandthisgivesrisetoacosθdependenceonangle.Cyclotronresonanceab-
sorptionwasconsistentwithanelectroneffectivemasssome12%largerthanthevalue
of0.067m0appropriatetoGaAs,anenhancementtheyattributedtonon-parabolicity
oftheGaAsconductionband(theelectronFermilevellying140meVabovetheGaAs
bandedgeattheinterface;seee.g.Nelson2001).

•  High purity sources 

•  Planar doping (1980) 
•  Double planar doping (1987) 

•  Short GaAs/AlAs SL (“super réseau poubelle”) (1984) 

Surface 



3x1 RHEED surface reconstruction 

hybrid lone pair perpendicular to the surface.18 A statistical
analysis on a 200!210 Å2 STM image of a !3!1" area
shows that 45% of this surface is covered by these !1!1"
cells, 39% by !3!2" cells, and 16% by dimer row pieces
and one ML holes. Furthermore, from the same STM image,
we count 970 surface Ga sp2 atoms involved in the !3!2"
cells as well as those located at the holes and upper dimer
rows ledges.15 However, if this surface were fully
"2!2!4" reconstructed there would be 1330 Ga sp2 located
at the upper dimer rows ledges. On this !3!1" surface there
is a significant decrease by 27% of the number of sp2 reac-
tive Ga sites compared to the regular "2!2!4" growth sur-
face.

Figure 4!a" shows two atomic resolution STM images of
the !n!6" area. A close view of the dark stripes reveals that
underlying As atoms are zigzag patterned resulting in a !6

period along #11̄0$. A similar !6!6" reconstruction has al-
ready been observed for the Ga-rich surface and often mixed
with the #!4!2".16,17 This means that the !6!6" is the
bridge between As-rich and Ga-rich surfaces. A careful
analysis of the As underlayer plane between the As-dimer
rows allows us to determine the As position and bonds. As
shown in Fig. 4!b", the As and Ga atoms are organized there
in two !3!2" subcells aligned along #11̄0$ and linked to-
gether by one As dimer. Neighboring !3!2" cells on the
!3!1" areas depicted in Fig. 3!a" do not have this As dimer.
The linking As dimers, between the !3!2" subcells of the
!6!6" cell, shift from side to side at each connection be-
tween subcells, leading to the observed zigzag pattern. Fi-
nally, we also note on the upper dimer rows that some dimers
are missing, this both when using the As cracker or the As
cell. There is no correlation between defective dimers and
the zigzag position in the neighboring rows.

This occurrence of !3!2" and !6!6" reconstructed cells
as well as large amount of non dimerized As atoms in
!3!1" growth conditions also leads to revisiting a very com-
pelling model used to predict the most stable reconstructions.
In the lowest energy state, the electron counting rule !ECR"

FIG. 3. !Color" !a" Filled states STM image showing the orga-
nization of the atomic As plane: 45% of As atoms are unrecon-
structed and 13% of As atoms are in faulted position leading to the
formation of a local !3!2" cell !a few are highlighted with pink
frames". !b" Height profile along the white #110$ line passing
through As atoms in faulted position. !c" Atomic structure for the
!3!2" cell: the faulted As atoms are linked to two planar Ga sp2

atoms.

FIG. 4. !Color" !a" Filled states STM image of a !6!6" recon-
structed area: the underlying As atoms are zigzag patterned. !b"
Atomic structure of the !6!6" cell: the underlayer As plane is
organized in !3!2" subcells linked by one As dimer shifting from
side to side at each connection between !3!2" subcells.
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Mixed surface: 
(1x1) cells 45% 
(3x2) cells 39% 
others 

27% decrease of the 
sp2 reactive Ga sites 
compared to β2(2x4) 

Less impurity incorporation 

Obtained for As/Ga ratio close to 1 



The Two-Dimensional Electron Gas (2DEG) 265

that well-established calculations of the contributions from different mechanisms in three
dimensions are frequently modified when applied to a two-dimensional electron gas.
In particular, acoustic phonon scattering shows an approximately T–1 dependence on
temperature in a 2D system (cf. T–3/2 in 3D) and ionised impurity scattering becomes
independent of temperature in 2D (cf. T3/2). Thus, high-mobility samples show three
clearly resolved regimes, representing polar optic-phonon scattering above about 50 K,
acoustic phonon scattering between 2 K and 50 K and ionised impurity scattering below
2 K (see Figure 6.26). This offers a clear aid to understanding and helps to confirm the
contribution of various sample changes to the measured mobility. Nor should we over-
look the value of free-carrier density ns—the challenge thrown up by the study of the
fractional quantum Hall effect is one of growing samples with maximum mobility at low
values of ns, in order to persuade all the carriers into the lowest Landau level at relatively
modest values of magnetic field.
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Figure 6.26 Plot of measured electron mobilities in 2DEGs grown
by MBE over the period 1978 to 2007. Samples with the highest
mobilities show clearly three temperature regimes, corresponding to
polar optic-phonon scattering, acoustic phonon scattering and
remote ionised impurity scattering. (From Schlom and Pfeiffer
2010, courtesy Macmillan)

Schlom and Pfeiffer 2010 

107 m2/V.s 

λ ~150 µm ! 

Mesoscopic experiments 
•  in-plane transport  
•  over very large distances 

(Mobility) mean free path 



The fractional quantum Hall effect 
Integer quantum Hall effect: a single particle effect 

Klitzing et al (1980) 
Si/SiO2 MOSFET 
(rough interface) 

New composite particles with 
fractional charge: e/3, e/5, e/7… 

1 electron + 2, 3,… magnetic flux quanta 

The Quantum Hall Effect 
 

 
 References:  
 
H. Stormer, The Fractional Quantum Hall Effect, Nobel Lecture, December 8, 
1998  
R.B. Laughlin, Physical Review B 23, 5632 (1981)   
Charles Kittel, Introduction to Solid State Physics 
R.B. Laughlin, Fractional Quantization, December 8th, 1998 
 

The integral quantum Hall effect was discovered in 1980 by Klaus von 
Klitzing, Michael Pepper, and Gerhardt Dordda. Truly remarkably, at low 
temperatures (~ 4 K), the Hall resistance of a two dimensional electron system is 
found to have plateaus at the exact values of 2h ie . In the above expression, i is 
an integer, h is Planck’s constant and e is the electron charge. At the same time, in 
the applied magnetic field range where the Hall resistance shows the plateaus, the 
magnetoresistance (i.e., the resistance measured along the direction of the current 
flow) drops to negligible values.  

Two years later, the even more intriguing fractional quantum Hall effect 
was discovered by Horst L. Störmer, Daniel C. Tsui, and Arthur C. Gossard. 
When cooled down below ~2 K, the Hall resistance of the 2D electron systems 
shows plateaus at the values of 2eh ν , where ν is a fraction such as 
1 3,  1 7,  2 3,  4 5 and so on. The value RH ≈ 25.812 kΩ for i = 1, the quantum 
of resistance, became the new world's resistance standard in 1990. 

We are thankful to Professor Horst Stromer, who kindly agreed to direct 
the setting up of the first integral quantum Hall effect experiment designed 
especially for the education of undergraduate students. We also wish to thank 
Alexander Elias, the remarkable undergraduate student who was in charge of this 
project. In the future, we hope we can expand the range of applications of this 
experiment to observe also the fractional quantum Hall effect.  

 

 
Figure 1: Left: original data of the discovery of the integral quantum Hall effect. Right: new 
data 

Hall plateaus  
-  Quantized resistance 

RH=h/e2~25kΩ 
-  Landau levels 
-  Edge modes 
-  involve impurities 

FQHE : a collective effect 

Störmer, Tsui, Gossard (1982) 

The one that “only 
provided the sample” 

AlGaAs/GaAs high mobility 2DEG 

Below 1.5K 

4 K 

The other assumption that will be important in our analysis is that, whenever
any contact of the Hall bar is configured as a voltage probe, it then draws no
electrical current. It should be recognized here that this statement applies to the
net current flowing through the voltage probe. This current is composed of two
contributions, the first which is due to incoming edge states that are equilibrated
at the electrochemical potential of the neighboring contact (downstream in the
sense of the edge-state flow), while the other is carried by edge states leaving
the probe. As is common in experiment, we consider that contacts 2, 3, 5, and 6
in Fig. 4.5 are to be used as voltage probes, while contacts 1 and 4 are used
to source and sink current, respectively. We can then make use of the results
of Section 3.3 to write the following expressions for the current drawn by the
voltage probes:

I2 ¼
2Ne2

h
ðV2 # V1Þ ¼ 0; ð4:9Þ

I3 ¼
2Ne2

h
ðV3 # V2Þ ¼ 0; ð4:10Þ

I5 ¼
2Ne2

h
ðV5 # V4Þ ¼ 0; ð4:11Þ

I6 ¼
2Ne2

h
ðV6 # V5Þ ¼ 0: ð4:12Þ

In these expressions, note that we have defined current leaving any probe as
positive, while current entering the probe is defined as negative. From these
relations, we can therefore infer that V1 ¼ V2 ¼ V3 and V4 ¼ V5 ¼ V6. The
current probes do draw net current, however, as described by the following
relations
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Fig. 4.5 Schematic

illustration of current flow
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probes, depending on
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circuit. For the case shown

here, N ¼ 3.

202 The quantum Hall effects



Mesoscopic transport 



Aharonov-Bohm effect 

The probability can therefore range from the sum of the two amplitudes to the
differences of the two amplitudes, depending on how the phases of the two
waves are related. In most cases, it is not important to retain any information
about the phase in device problems because the coherence length is much
smaller than any device length scale and because ensemble averaging averages
over the phase interference factor so that it smooths completely away in macro-
scopic effects. This ensemble averaging requires that a large number of such
small phase coherent regions are combined stochastically. In small structures
this does not occur, and many observed quantum interference effects are direct
results of the lack of ensemble averaging [18].

A particularly remarkable illustration of the importance of the quantum
phase is the magnetic Aharonov–Bohm effect [19], as may be seen in quasi-
two-dimensional semiconductor systems. The basic structure of the experiment
is illustrated in Fig. 1.4. A quasi-one-dimensional conducting channel is fabri-
cated on the surface of a semiconductor. This channel is usually produced in a
high-electron-mobility heterostructure in which the channel is defined by react-
ive-ion etching [20,21,22], or by electrostatic confinement [23]. In either case, it
is preferable to have the waveguide sufficiently small so that only one or a few
electron modes are possible. The incident electrons, from the left of the ring in
Fig. 1.4, have their waves split at the entrance to the ring. The waves propagate
around the two halves of the ring to recombine (and interfere) at the exit port.
The overall transmission through the structure, from the left electrodes to the
right electrodes, depends upon the relative size of the ring circumference in
comparison to the electron wavelength. If the size of the ring is small compared
to the inelastic mean free path, the transmission depends on the phase of the
two fractional paths. In the Aharonov–Bohm effect, a magnetic field is passed

Fig. 1.4 Micrograph of

the etched ring structure.

(After Mankiewich et al.

[22].)
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electric field transport is normally treated in the relaxation time approximation
through a rigid shift of the distribution function in momentum space so that the
carriers acquire a net velocity while maintaining a distribution function charac-
terized by thermal equilibrium and the normal Fermi energy [24]. With the
problem of carrier heating, however, this is no longer the case. The input of
energy from the applied fields and potentials leads to an increase of the kinetic
motion of the particles as well as a directed drift velocity. The distribution
function is no longer the equilibrium one, and usually the major problem is
finding this new distribution function. For this purpose one must rely upon a
transport equation.

The Boltzmann transport equation (BTE) has been a cornerstone of semi-
classical transport theory for many years. However, as we pointed out above,
there are a great many assumptions built into this equation, and some of these
will no longer be applicable in nanostructures. One of the strongest limitations
on the BTE arises from the restrictions that the field and the scattering events are
treated as noninteracting perturbations, or that each scattering event is treated as
a separate entity which does not interact with other scattering events or processes.
This result cannot be expected to hold either in high electric fields or in con-
strained geometries arising from nanostructures. This means that a new kinetic
equation must he obtained to replace the BTE of semiclassical transport theory.

Virtually all quantum kinetic theories are based upon reductions of the
Liouville–von Neumann equation for the density matrix !, with appropriate
boundary conditions,
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through the annulus of the ring, and this magnetic field will modulate the phase
interference at the exit port.

The vector potential for a magnetic field passing through the annulus of the
ring is azimuthal, so that electrons passing through either side of the ring will
travel either parallel or antiparallel to the vector potential, and this difference
produces the phase modulation. The vector potential will be considered to be
directed counterclockwise around the ring. (We adopt cylindrical coordinates,
with the magnetic field directed in the z-direction and the vector potential in
the y-direction.) The phase of the electron in the presence of the vector potential
is given by the Peierl’s substitution, in which the normal momentum vector k is
replaced by pþ eAð Þ=!h,

’ ¼ ’0 þ
1
!h

pþ eAð Þ % r; ð1:23Þ

so that the exit phases for the upper and lower arms of the ring can be
expressed as

’up ¼ ’0 þ
ð0

!

k þ e
!h
A

" #
% a#rd#

’lo ¼ ’0 &
ð0

&!

k & e
!h
A

" #
% a#rd#

; ð1:24Þ

and the phase difference is just

"’ ¼ e
!h

ð2!

0

A % a#rd# ¼ e
!h

ð

ring

B % ndS ¼ 2!
"

"0
; ð1:25Þ

where "0 ¼� h=e� is� the� q�uantum� unit� of� flux� and� "� is� the� magne�tic� flux� couple�d
through� the� ring.� The� phase� inte�rference� term� in� Eq.� (1.22�)� goes� throu�gh� a
complete oscillation each time the magnetic field is increased by one flux
quantum unit. This produces a modulation in the conductance (resistance) that
is periodic in the magnetic field, with a period h=eS, where S is the area of
the ring. This periodic oscillation is the Aharonov–Bohm effect, and in Fig. 1.5
results are shown for such a semiconductor structure. While these oscillations
are obvious in such a constructed ring, mesoscopic devices are described by a
great many accidental rings that come and go as the electrochemical potential
is varied.

1.2.3 Carrier heating in nanostructures

One of the classic problems of semiconductors and semiconductor devices is
carrier heating in the high electric fields present in the device. In general, low
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negative until it eventually vanishes between the split gates. The length of the
1DEG is defined by the width of the gate contacts and the shape of the depletion
regions around the contacts. In contrast to metallic point contacts [2], which are
essentially similar structures but in which the high electron density means that
the electron wavelength is much smaller than the constriction size, the important
feature of semiconductor QPCs is that the Fermi wavelength is comparable to
that of the structure. At the same time, and in contrast to the situation in metals,
the electron mean free path in semiconductors can be very long, much longer
than the QPC length. Consequently, electrons travel ballistically through these
structures, and it is this fact, combined with the presence of strong momentum
quantization in the QPC, that gives rise to the observation of the above men-
tioned conductance quantization.

Fig. 5.2 shows an example of the conductance quantization that is exhibited
by QPCs. In this measurement, the conductance of the QPC is measured
(in the absence of a magnetic field) while its gate voltage is made more negative.
Referring to the behavior shown in the inset, as the gate voltage is made more
negative than!"0.5 Va sudden drop in the conductance is observed, indicating
the full depletion of the 2DEG directly underneath the gates and, thus, the
formation of the QPC. As the gate voltage is made further negative a slower
decrease of the conductance occurs and it is clear from the behavior in the main
panel that it develops a steplike variation. In fact, the conductance in this figure
is plotted in units of 2e2=h and it is clear that each step in the conductance
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corresponds to a change by this amount. This remarkable behavior was first
observed, independently, by Wharam et al. [4] and van Wees et al. [5] in 1988
and has since been confirmed in numerous experiments.

For an intuitive discussion of the origins of the conductance quantization, it is
helpful to start from a discussion of the form of the self-consistent potential that
arises for electrons when a gate bias is applied to the QPC. The actual form of
this potential due to the space charge region and the gates is complicated and
requires the 3D solution of Poisson’s equation. A simple analytical model of the
potential in a QPC may be obtained, however, if one neglects the effects due to
space charge layer formation and simply treats the GaAs/AlGaAs heterostruc-
ture as a dielectric [7]. For two electrodes held at a constant voltage Vg forming
a narrow constriction, the confining potential may be expressed as

V ðx; yÞ ¼ f
2x$ l
2z0

;
2yþ w
2z0

! "
$ f

2xþ l
2z0

;
2yþ w
2z0

! "
þ f

2x$ l
2z0

;
$2yþ w

2z0

! "
$ f

2xþ l
2z0

;
$2yþ w

2z0

! "
; ð5:1Þ

where

f ðu; vÞ ¼ eVg

2!
!

2
$ tan$1 u$ tan$1 vþ tan$1 uvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2 þ v2
p

! "
: ð5:2Þ

Here, l and w are the lithographic width and gap between the electrodes,
respectively, and z is the vertical distance between the 2DEG and the gate (the
coordinates of the x–y plane are indicated in Fig. 5.1). An example of a potential
calculated using the formulas above is shown in Fig. 5.3. From this figure it can
be clearly seen that application of appropriate bias to the gates results in the
formation of a saddle potential. This not only confines electrons in the (y)
direction transverse to the wire axis, but also presents a potential barrier (formed
at the saddle minimum) along the (x) direction of current flow. The form of this

15

S

(a)

(b)

L w D

sample C
T = 60 mK

1200

600

0

Vg

Vg

10

5

0
–6

–6 –4 –2 0

–5
Gate voltage Vg (V)

G
 (

in
 u

ni
ts

 o
f 2

e2 /
h)

G
 (

µS
)

–4 –3

Vg (V)

Fig. 5.2 A beautiful

example of conductance

quantization in a split-gate

QPC ([6], with permission).

5.1 Conductance quantization in quantum point contacts 251

Thomas et al. PRL 96 

potential evolves smoothly with change of gate voltage, with the saddle minimum
rising in energy and the transverse width of the QPC shrinking, as Vg is made
more negative. Typically, it is the combination of these two effects that eventu-
ally causes the QPC to pinch off (near !5.8 V in the case of Fig. 5.2) [8,9].

Reasonably close to the bottom of the saddle in Fig. 5.3, the variation of the
electron potential energy can be well described by a parabolic form:

V ðx; yÞ ¼ V0 !
1
2
m%o2

xx
2 þ 1

2
m%o2

0y
2; ð5:3Þ

where V0 is the height of the saddle-barrier, m* is the electron effective mass,
and ox and o0 are characteristic oscillator frequencies. o0 determines the energy
splitting of the one-dimensional subbands in the QPC, while ox essentially
dictates how sharply its transmission drops to zero when the Fermi level falls
below the saddle minimum. For a harmonic-oscillator potential of the form of
Eq. (5.3), one expects that the energy for motion along the direction of confine-
ment should be quantized into a set of equally spaced energies. The resulting
electron dispersion relation (with energy measured relative to the conduction-
band edge) is then given by

En ¼ nþ 1
2

! "
!ho0 þ

!h2k2x
2m% ; n ¼ 1; 2; 3; . . . ð5:4Þ

This relation defines a series of one-dimensional modes (subbands, or channels),
each of which is characterized by a unique value of the index, n. Similar to the
discussion of edge states in Chapter 4, in a system with a fixed Fermi energy,
only those subbands whose energy threshold (at kx ¼ 0) lies below the Fermi
energy will be populated by electrons at low temperatures (Fig. 5.4) and so
contribute to current through the QPC. To obtain an expression for the number
of occupied subbands (N) in the QPC [10], we note that its effective width (W)
at the Fermi energy (EF) is

Fig. 5.3 Calculated QPC

potential from Eqs. (5.1)

and (5.2). Figure courtesy

of Dr. A. Ramamoorthy.
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Light-matter interaction in 
semiconductor heterostructures 



The dielectric constant of semiconductors 

D = ε0 E + P 

In a linear, homogeneous, isotropic dielectric medium   

P = ε0 χ E χ: Electric susceptibility 

D: electric displacement field  
P: polarization density or electric 
dipole moment per unit volume  

D = ε0 (1+χ) E = ε0εr E  εr : relative permittivity or 
dielectric constant   

To interact with matter, light (frequency ω) has to couple to oscillators 

εr (ω) =1+
f j

ω0 j
2 −ω 2 − iωγ jj

∑ fj : oscillator strength 
ω0j: frequency 
γj: damping constant 

Oscillator j 

ñ = √εr Complex refractive index 



Oscillators in semiconductors 
 that couple to e.m. field 

Excitons 

Phonons 

Plasmons 

Optical properties close to the gap 
 NIR, visible, UV 

•  Optical properties (optical phonon) in the IR range 
•  Raman (optical phonon) and 

Brillouin (acoustic phonon) scattering 

In highly doped structures 
in the IR range (semiconductors) 



Exciton 

242 9 Excitons, Biexcitons and Trions

excited state and the hole left behind. This is even true if one excites an
electron in a metal from a state in the Fermi sea with an energy below the
Fermi energy EF to an empty state above.

Excitons can be described at various levels of sophistication. We present
in the next sections the most simple and intuitive picture using the effective
mass approximation. Other approaches are described in [57E1, 62N1, 63K1,
63P1, 77B1, 78U1, 79E1, 79R1, 79S1, 81F1, 81K1, 85H1] or [82M1, 86U1, 93P1,
96Y1,98E1,98R1,04O1] of Chap. 1 and references therein.

In Chap. 27 we shall also see how excitons are described in semiconductor
Bloch equations.

The concepts of Wannier and Frenkel excitons were introduced in the
second half of the 1930s [31F1, 37W1]. There is some controversy concerning
the first experimental observations. The author does not wish to act as the
referee to settle this point. Instead we give some references to early work
[50H1,52G1,56G1,58N1,62N1] and to Fig. 13.9 and leave the decision to the
reader.

9.1 Wannier and Frenkel Excitons

Using the effective mass approximations, Fig. 9.1a suggests that the Coulomb
interaction between electron and hole leads to a hydrogen-like problem with
a Coulomb potential term – e2/(4 π ϵ0 ϵ |re − rh|).

Indeed excitons in semiconductors form, to a good approximation, a hy-
drogen or positronium like series of states below the gap. For simple parabolic

Fig. 9.1. A pair excitation in the scheme of valence and conduction band (a) in the
exciton picture for a direct (b) and for an indirect gap semiconductor (c)
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bands and a direct-gap semiconductor one can separate the relative motion
of electron and hole and the motion of the center of mass. This leads to the
dispersion relation of excitons in Fig. 9.1b.

Eex(nB, K) = Eg − Ry∗ 1
n2

B

+
!2K2

2M
(9.1a)

with
nB = 1, 2, 3 . . . principal quantum number ,

Ry∗ = 13.6 eV
µ

m0

1
ε2

exciton Rydberg energy , (9.1b)

M = me + mh, K = ke + kh translational mass and
wave vector of the exciton . (9.1c)

For the moment, we use a capital K for the exciton wave vector to distinguish
this two-particle state from the one-particle states. When we are more familiar
with the exciton as a new quasi-particle we shall return to k.

µ =
me mh

me + mh
reduced exciton mass , (9.1d)

aex
B = aH

Bε
m0

µ
excitonic Bohr radius . (9.1e)

The radii of higher states can be considered on various levels of complexity.
If one only takes into account the exponential term exp {Zr/naH

B} in the radial
part of the wave function of the hydrogen problem appearing as the envelope
function in (9.4a) and defines the (excitonic) Bohr radius by the decrease of
this term to 1/e, one obtains with Z = 1 for excitons

aB (nB) = aH
B ε

m0

µ
nB , (9.2a)

i.e., a linear increase with nB.
If, on the other hand, one takes the full radial function into account, i.e.,

also including the factor
ρl L2l + 1

nB + l
(ρ) (9.2b)

where l is the angular quantum number and ρ = 2Z r/nB · aH
B and L2l + 1

n0B + l
are the Laguerre polynomials and calculates the average distance between
electron and proton or hole, respectively, one obtains [55S1,94L1]

⟨r (nB)⟩ =
aB

2
[
3 n2

B − l (l + 1)
]

(9.2c)

i.e., for the nBS states (i.e. l = 0) a quadratic dependence starting with 3 aB/2
for nB = 1.
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Hydrogen-like problem 

Coulomb interaction between  
an electron and a hole 
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i.e., for the nBS states (i.e. l = 0) a quadratic dependence starting with 3 aB/2
for nB = 1.

Exciton translational mass 
and wave vector 

Exciton binding energy 

9.1 Wannier and Frenkel Excitons 243

bands and a direct-gap semiconductor one can separate the relative motion
of electron and hole and the motion of the center of mass. This leads to the
dispersion relation of excitons in Fig. 9.1b.

Eex(nB, K) = Eg − Ry∗ 1
n2

B

+
!2K2

2M
(9.1a)

with
nB = 1, 2, 3 . . . principal quantum number ,

Ry∗ = 13.6 eV
µ

m0

1
ε2

exciton Rydberg energy , (9.1b)

M = me + mh, K = ke + kh translational mass and
wave vector of the exciton . (9.1c)

For the moment, we use a capital K for the exciton wave vector to distinguish
this two-particle state from the one-particle states. When we are more familiar
with the exciton as a new quasi-particle we shall return to k.

µ =
me mh

me + mh
reduced exciton mass , (9.1d)

aex
B = aH

Bε
m0

µ
excitonic Bohr radius . (9.1e)

The radii of higher states can be considered on various levels of complexity.
If one only takes into account the exponential term exp {Zr/naH

B} in the radial
part of the wave function of the hydrogen problem appearing as the envelope
function in (9.4a) and defines the (excitonic) Bohr radius by the decrease of
this term to 1/e, one obtains with Z = 1 for excitons

aB (nB) = aH
B ε

m0

µ
nB , (9.2a)

i.e., a linear increase with nB.
If, on the other hand, one takes the full radial function into account, i.e.,

also including the factor
ρl L2l + 1

nB + l
(ρ) (9.2b)

where l is the angular quantum number and ρ = 2Z r/nB · aH
B and L2l + 1

n0B + l
are the Laguerre polynomials and calculates the average distance between
electron and proton or hole, respectively, one obtains [55S1,94L1]

⟨r (nB)⟩ =
aB

2
[
3 n2

B − l (l + 1)
]

(9.2c)

i.e., for the nBS states (i.e. l = 0) a quadratic dependence starting with 3 aB/2
for nB = 1.

250 9 Excitons, Biexcitons and Trions

Fig. 9.3. The exciton bind-
ing energy Eb

ex as a function
of the band-gap for various di-
rect gap semiconductors ([82L1,
93H1,93P1] of Chap. 1)

It should be mentioned that the excitation of an optically (dipol-) allowed
exciton is accompanied by a polarization as detailed in Chaps. 5 and 27 on
polaritons and on (semiconductor) Bloch equations, respectively.

The concept of exciton-phonon boundstates has been introduced in [68T1,
72K1,02B1].

Finally we mention that excitons can also be formed with holes in deeper
valence bands. These so-called “core-excitons” are usually situated in the VUV
or X-ray region of the spectrum and have a rather short lifetime. An example
and further references are given in Sect. 13.1.7 and [87C1,88K1].

9.3 The Influence of Dimensionality

If we consider the exciton again as an effective mass particle with parabolic
dispersion relations, as given by (9.1), we expect a first influence of the di-
mensionality on the density of states analogous to the situation shown in Fig.
8.20 for every exciton branch nB = 1, 2, 3 . . .

Another effect of the dimensionality manifests itself in the binding energy,
the Rydberg series and the oscillator strength. We consider an exciton, for
which the motion of electron and hole is restricted to a two-dimensional plane,
but the interaction is still a 3d one, i.e., proportional to e2/|re − rh| and
find (9.10a), (9.10b) in comparison to the 3d case of (9.1) (see e.g. [93H1] of
Chap. 1):

3d: E(K, nB) = Eg − Ry∗ 1
n2

B

+
!2(K2

x + K2
y + K2

z )
2M

(9.10a)

and for the oscillator strength f for the principal quantum number nB in the
limit of (9.2a):

f(nB) ∝ n−3
B ; aB ∝ aH

BnB; nB = 1, 2, 3 . . . . (9.10b)
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by the vertical lines. Consequently the whole diagram of Fig. 13.1 can be
considered as a representation of the exciton polariton.

In the other approach, which follows [93H1] of Chap. 1, we start with the
electron and hole operators, construct from them the exciton and finally the
exciton polariton. (see also Sect. 9.1)

We start with the creation and annihilation operators for excitons:

B+
v,k ; Bv,k . (13.3)

The index v stands for the quantum numbers nB, l, m.
It can be shown that the Bv,k deviate from the commutator relations of

ideal bosons by a term proportional to the mean number of electron–hole
pairs, n, contained in the volume of an exciton ad

B (see e.g. [93H1, 93P1] of
Chap. 1)

⟨[B 0 , 0, B
+
0 , 0]

−⟩ = 1 − O (nad
B) , (13.4)

where d is the dimensionality of the system. The Hamiltonian of a non-
interacting exciton gas is then

H =
∑

v,k

E (v, k)B+
v,k Bv,k . (13.5)

Using an analogous expression for the photons with the number opera-
tor c+

k ck, for the interacting system of excitons and photons considering the
leading, i.e., resonant terms around a specific resonance only, we obtain

H =
∑

k

[
∑

v

Evk B+
vk Bvk + ! ωk c+

k ck − i !
∑

v

gvk (B+
vk ck − h.c.)

]
.

(13.6)
The coupling coefficients gvk contain the transition matrix elements as in (13.1).

If we consider the third term on the right-hand side of (13.6) as a pertur-
bation, we are back once more to the weak coupling limit.

The polariton concept is obtained if we diagonalize the whole Hamiltonian
(13.6) by a suitable linear combination of the Bvk and the ck, leading to the
polariton operator Pk

Pk = uvk Bv,k − vk ck (13.7)

with |uvk|2 + |vk|2 = 1 . (13.8)

Fig. 13.1. Diagrammatic representation of an exciton polariton
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(Fig. 2.2) and for the polarization wave of an ensemble of uncoupled oscilla-
tors a horizontal line (Fig. 4.2a). The relation between ω and k for polaritons,
i.e., for the light quanta in matter, can be derived from classical physics and
agrees with the results of the quantum-mechanical treatment outlined above.

We remember that the wave vector in matter k is connected with the wave
vector in vacuum kv by the complex refractive index ñ(ω) (2.36). To get rid
of the vector character, we consider the squares

k2 = k2 = ñ2(ω)k2
v (5.5)

Now we also recall (2.35), (2.13) saying that ñ2(ω) = ε(ω) and k2
v =

(2π/λv)2 = (ω/c)2 and obtain again (2.33)

c2k2

ω2
= ε(ω). (5.6)

This is the so-called polariton equation. On the other hand, we know ε(ω)
which is given in the vicinity of a single resonance by (4.20), (4.22). Putting
(5.6) and (4.22) together we find

c2k2

ω2
= εb +

f

ω2
0 − ω2 + iωγ

. (5.7)

This is an implicit representation of ω(k) for the polaritons. For the sim-
plest case, namely vanishing damping γ and no dependence of ω0 or f on
k, it is quite easy to calculate k(ω) and ω(k). We do not give the formu-
las here because they bring no further physical insight, but in Fig. 5.1 we
give the dispersion relation for the case just mentioned including only one

Fig. 5.1. The polariton dispersion in the vicinity of a single resonance for vanishing
damping (solid lines) and finite damping (dashed lines) for εb = 1. The dashed-
dotted line gives the disperson of photons in vacuum (a); real and imaginary parts
of ñ(ω) for vanishing damping (b) and the creation of the polariton dispersion (solid
lines) from those of excitons and photons (dashed lines) and the non-crossing rule;
(εb > 1) (c)
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Fig. 13.4. The bandstructure of CdS around the Γ -point (a); the dispersion of the
nB = 1 A and B exciton polariton resonances (b); and the reflection spectra for the
polarizations E ⊥ c and E ∥ c (c). According to [82B1,85H1,93K1]

even lead to an “inversion” of the usual reflection spectrum, i.e., to a dip at
low energies and a maximum above. A set of calculated spectra showing this
phenomenon is given in Fig. 13.6.

The BΓ1 exciton resonance is again a simple one, but the BΓ5 has a small
dip stemming from the additional polariton branch shown in Fig. 13.4b, which
at this energy reaches exactly n = 1.

While the A and BΓ5 excitons have in CdS for E ⊥ c roughly equal oscilla-
tor strength and ∆LT [85H1], the situation changes for close lying resonances
as occurs for ZnO [85H1]. In this case the longitudinal transverse splitting

CdS bulk 
Wurzite structure 
3 types of excitons 
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Fig. 7.11a–d. Comparison between experimental and calculated polariton emission spectra
in four semiconductors. The solid curves are experimental spectra while the red dashed
curves were calculated [7.26] using a two-branch polariton model with the Pekar ABC.
The black dashed-dotted curves represent a bound exciton background

excitons are involved, it is necessary to introduce additional boundary condi-
tions (known as ABCs) to describe the behavior of excitons near the sam-
ple surface. There have been many theoretical treatments of the ABC prob-
lem (e. g. [7.30–33]) and a detailed description of these theories is beyond the
scope of this book. The whole question of which ABC to choose for a partic-
ular sample is still unresolved since it will presumably depend on the details
and quality of the sample surface [7.34].

Polariton luminescence spectra have been computed by Askary and Yu
[7.26] using two different types of ABCs. Figure 7.12a shows the calculated
polariton distributions in the lower branch (abbreviated as LB in the figure)
of CdS for the two ABCs. A large peak occurs at the bottleneck near the
transverse exciton energy as predicted by Toyozawa. The corresponding PL
spectra including the upper branch (labeled UB) and the transmission coeffi-

Bulk Luminescence 

Nothing like a 
Lorentzian shape! Polariton emission 
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It is clear from some of the above-mentioned examples that the same atom
can act as donor or acceptor depending on the way it is introduced into the
lattice. This is one possibility for self-compensation. Another arises from the
fact that some vacancies or interstitials can act as donors or as acceptors
or that the incorporation of an acceptor (donor) in one of the II–VI com-
pounds, which are notoriously n-type (p-type) like ZnSe, CdS or ZnO (ZnTe)
triggers in thermodynamic equilibrium rather the formation of another de-
fect, which acts as a donor (acceptor) instead of shifting the Fermi-level
close to the valence (conduction) band to produce p-type (n-type) conduc-
tivity [88W1,95F1]. Actually the recent success of p-doping of ZnSe is based
entirely on freezing in a non-equilibrium substitutional N occupation on Se
sites created during growth. A material which has a higher concentration of
donors (acceptors) is called n-type (p-type) and we recall that np = n2

i (T )
in thermodynamic equilibrium. The ability to choose the type and concentra-
tion of carriers over a wide range by doping with donors and/or acceptors
is the basis for the widespread and important application of semiconduc-
tors in electronic devices like diodes, transistors, thyristors, etc. This topic
is beyond the scope of this book and we refer the reader to text books on
the physics of semiconductor devices, like [65S1, 81S1, 85P1, 86P1, 92E1] of
Chap. 1.

A shallow donor (acceptor) can be considered as a positively (negatively)
charged center to which an electron (hole) is bound by Coulomb interaction.
So we are faced with a problem similar to that of a hydrogen atom, leading,
in the simplest approximation, to a series of states with binding energy

ED,A
b = Ry

me,h

m0

1
ε2

1
n2

B

(8.57a)

where Ry is the Rydberg energy of the H atom (Ry = 13.6 eV), nB the main
quantum number and ε a dielectric constant. In Fig. 8.36 we show only the

Fig. 8.36. Schematic drawing of various impurity levels in semiconductors

Defects 
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I lum
m (!ω) ∝

{
E1/2

kin exp (−Ekin/kBT )Wm(Ekin) for Ekin ≥ 0

0 otherwise

with !ω = E0 − m!ωLO + Ekin . (13.15b)

where E0 is the energy of the dipole allowed, transverse exciton at k = 0.
The transition probability Wm(Ekin) can be often expressed by a power

law, i.e.,
Wm(Ekin) ∝ Elm

kin . (13.16)

For m = 1 one finds l1 = 1 since the density of final states for the
LO phonons increases with Ekin ∝ k2 assuming that the wave vector of the
photon-like exciton polariton in the final state is negligible.

For m = 2 many different combinations of the two-phonon wave vectors
are possible for a given k of the exciton-like polariton. As a consequence l2
is zero and the lineshape of the second LO phonon replica directly reflects
the distribution of exciton polaritons in the initial state. In Fig. 13.13 we
show the emission of ZnO at 55 K. The free exciton polariton is not seen in
emission for the reasons given above. There is a little bound exciton emission
(Sect. 14.1) around 3.34 eV and the LO phonon replicas for m = 1, 2, 3. The
theoretical curves are calculated according to (13.15), (13.16) assuming that
the lattice temperature and the temperature of the gas of exciton-like polari-
tons are equal. The fit coincides very nicely with experiment, thus confirming
concepts developed above and proving especially that excitons are good quasi
particles, the distribution of which can be described in many cases by Boltz-
mann statistics. A further example will be given for Cu2O in Sect. 13.2.1.2.

Fig. 13.12. Schematic
drawing of the decay
mechanisms of the
exciton-mLO phonon
emission processes

Phonons Air/dielectric interface 
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mode. This fact reduces the reflectivity in the reststrahlbande to values be-
low 1, even in the case of negligible damping. For frequencies above ωL there
are several propagating modes, and below it there is at least one propagat-
ing mode and one or more evanescent ones. This situation is not covered by
the boundary conditions deduced from Maxwell’s equations and additional
boundary conditions (abc) have to be introduced containing the information
about what fraction of the energy transmitted through the interface travels
on which polariton branch. Since this “branching” ratio is ω-dependent and
since the imaginary parts of the various branches differ, the decay of the in-
tensity into the depth of the sample can be nonexponential. This means the
“effective” absorption coefficient can be thickness dependent. Furthermore it
looks more complex (Fig. 5.5) than Fig. 4.4.

The abc which have been introduced by Pekar and by Hopfield [58H1,
62H1, 62P1, 63H1, 64M1] assume that the excitonic part of the polarization
at the surface vanishes, or its derivative normal to the surface, or a linear
combinations of both. See Sect. 5.4 and e.g. [74A1, 75L1, 78B1, 78H1, 78S1,
79B1,79S1,80B1,81B1,81L1,81S1,82O1,82R1,82S1,83M1,84H1,84S1,85H1]
of Chap. 5. In [98H1] a way out of this abc problem has been shown. For
even more recent approaches see [00T1, 01S1]. Furthermore one can assume
that excitons do not “leak out” of the semiconductor into vacuum and that
there should consequently be an exciton-free surface layer (dead layer), the

Fig. 13.3. The problem of reflection for a semiconductor in the vicinity of an exciton
resonance for normal incidence including multiple reflection in a dead layer and two
propagating modes due to spatial dispersion
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Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor
Quantum Microcavity

C. Weisbuch, ' M. Nishioka, A. Ishikawa, and Y. Arakawa
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(Received 12 May 1992)
The spectral response of a monolithic semiconductor quantum microcavity with quantum wells as the

active medium displays mode splittings when the quantum wells and the optical cavity are in resonance.
This effect can be seen as the Rabi vacuum-field splitting of the quantum-well excitons, or more classi-
cally as the normal-mode splitting of coupled oscillators, the excitons and the electromagnetic field of the
microcavity. An exciton oscillator strength of 4&&10' cm is deduced for 76-A quantum wells.

PACS numbers: 42.50.—p, 71.35.+z, 73.20.Dx, 78,45.+h

There is a present surge of activity in the experimental
studies of atom-photon coupling in the context of the in-
teraction between single or few atoms [1-3] and resonant
optical media such as cavities [1-4] or structured materi-
als for photonic gaps [5]. The interest is both fundamen-
tal, leading to a better understanding of atom-field cou-
pling or stressing analogies between electrons and pho-
tons, and applied, as one expects optical systems with un-
surpassed properties for applications such as single-mode,
high-yield luminescence leading to the thresholdless laser
[6].
So far, the studies in the fields of atomic physics and

solid state physics (mostly semiconductors) have re-
mained quite separate: The former activities are concen-
trated on atom-cavity interactions [1-3,7], and the latter
on controlled spontaneous emission [4,8,9] and photonic-
gap three-dimensional structures [51.
We present in this Letter a solid state QED effect

which is a solid state analog of the vacuum-field Rabi
splitting [10] so far carried out in atoms [2,3]. Besides its
relying on a much simpler implementation —the solid
state system is monolithic —the eA'ect should lead to use-
ful applications.
Let us first examine the semiconductor as an atomic

system: The usual optical transitions due to the creation
of electron-hole pairs yield a distributed oscillator
strength over energy bands, Although the standard Rabi
oscillations induced by strong optical fields have been ob-
served in solids [11], it has been pointed out [121 that
electron-hole pair transitions would not lead to vacuum-
field Rabi oscillations, as the relaxation time of carriers is
much shorter than the expected vacuum-field Rabi oscil-
lation period. On the other hand, it is well known that
sharp, atomiclike excitations do exist at low temperatures
in many semiconductors, namely, the excitons, due to the
electron-hole interaction, leading to a concentration of os-
cillator strength from the continuum of electron-hole un-
bound states into hydrogenlike bound levels [13]. In the
ground state of 3D excitons, the oscillator strength per
unit volume can be shown to be =f/att [3],where f is an
atomic oscillator strength and aa is the exciton Bohr ra-
dius, therefore increasing by a large factor the Rabi fre-
quency.

Rabi oscillations can be seen as a coupled-oscillator
process, by which resonantly coupled atomic and field os-
cillators periodically exchange energy. In a mechanical
oscillator description, the overall system response yields
two split modes corresponding to the normal modes. In
an atomic transition language, one considers the system
as undergoing a coherent evolution with a photon being
absorbed by an atom, which subsequently emits a photon
with the same energy and wave vector k, that photon be-
ing reabsorbed, and so on. A simple criterion for this
phenomenon to spontaneously occur in a cavity can be
put as [3]

ad )) 1
—R = tr/F,

where tt is the absorption coefficient, d the absorbing
medium length, R the cavity mirror reflection coefficient,
and F the cavity finesse. This inequality states that be-
fore escaping the cavity, an emitted photon is reabsorbed.
To be observable, such an eA'ect also supposes that the
atom interacts more strongly with the cavity mode than
with either all other photon modes or other deexcitation
channels [14].
At this point it should be recalled that the equivalent of

vacuum-field Rabi oscillations have been proposed and
seen long ago in solids, although in a difl'erent framework:
Various types of polaritons, such as phonon polaritons
[15] or excitonic polaritons [161, are just the coupled-
mode oscillations of the vacuum field with either phonons
or excitons which act as resonant two-level atomic sys-
tems. There is no cavity, as these traveling excitations
possess both well-defined energy and wave vector, and
therefore are only coupled to the one photon mode with
the same energy and wave vector. Thus, irreversible cou-
pling to the continuum of photon states is nonexistent,
and only the scattering of polaritons by other material ex-
citations can destroy the propagating coherent mode.
Most direct evidence of polaritons has been provided by
reflectivity [17] and light scattering experiments [18,19].
Although representing the fundamental electromagnet-

ic excitations of 3D crystals, polaritons are not versatile
and cannot be tailored at will. The new system (inset of
Fig. 1) which we use here should prove much more im-
portant in that respect and is a monolithic solid state re-
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quency, one therefore only needs to probe diAerent points
on the wafer. The topmost curves in Fig. 1 correspond to
equal resonant frequencies of the cavity and quantum-
well exciton, while the bottom one corresponds to a cavity
energy detuning above the exciton. Figure 2 shows vari-
ous reflectivity curves for a sample with seven quantum
wells in the Fabry-Perot cavity.
A simple theoretical treatment consists in considering

the DFB reflectors as simple, wideband mirrors of con-
stant reflectivity and transmission coefficients. Then, the
standard multibeam Fabry-Perot analysis can be carried
out, which yields the transmission coefficients as [3]

T2~ -adT(v) =
(1 —Re ' ) +4Re '"sin (e/2)

(3)

where R and T are reflection and transmission coefficients
of the front and back mirrors, assumed identical, a the
absorption coefficient of the cavity QW's with total length
d, and 4 the dephasing over the various materials of the
cavity,
4(v) =2m(A —4«s)/AFsR+4rr(n nb)—dv/c, (4)

where &=v vexci +res vcav vexc~ +FsR=c/2L is the
cavity free spectral range, and n and nb are respectively
the resonant and background index of refraction of the
cavity quantum wells. We use for the exciton dielectric
function a simple two-level approximation with Lorentzi-
an linewidth 8=2 meV. The peak absorption a is adjust-
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FIG. 2. 5-K reflectivity curves on a seven-QW microcavity
structure. Various detuning conditions between cavity and QW
exciton frequencies are obtained by choosing various points on
the wafer, typically 0.5 mm apart. Note the line narrowing ap-
proaching and at resonance, the resonance mode splitting, and
the indication of a light-hole exciton mode splitting around
1.605 eV for the lowest trace.
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ed to the standard value of 3x10 cm '. Such a descrip-
tion, classical linear-dispersion model, of the system then
yields two peak or dips in the transmission or reflectivity
curves, respectively, separated by, when the oscillator fre-
quencies are equal (v,„,= v„,) [3],

& = (rrdaaFsR/rr) ' (s)

Figure 3 shows a plot of the peak positions observed
when scanning through the resonance, evidencing equiv-
alently a well-behaved level anticrossing, and normal-
mode splitting or Rabi splitting. The theoretical fit is ob-
tained from the above simplified analysis, or a standard
multiple-interference analysis of the DBR-FP interferom-
eter using a matrix formulation for optical propagation
[20]. From the fit with a =3 x 10 cm ' and 8 =2 meV,
we can deduce Nf=4 x10' cm, in excellent agree-
ment with theoretical evaluations [25].
As mentioned previously the number n of quantum

wells can be varied to provide various coupling strengths
between excitons and cavity photons. As could be expect-
ed, a single well does not provide enough coupling to
fulfill Eq. (1) (see, e.g. , Fig. 1). At a number of wells
~ 5 the splitting tends to saturate, possibly due to the
noncentral position of outer wells in the cavity, collapse of
the cavity finesse at such high absorption, or influence of
other states (light-hole excitons, continuum states).
Several additional comments can be made at this pre-

liminary stage: As is evident in Figs. 1 and 2, the cavity
linewidth becomes smaller under resonant conditions. In
atomic physics experiments, as the cavity finesse is usual-
ly extremely high, the coupled-mode linewidth can be
smaller than the natural atom linewidth [2, 14]. We are
here in a converse situation where the cavity linewidth is
narrowed by the interaction with QW's.
So far we used low temperatures (up to 77 K) to shar-

pen the features described here. We did not yet check at
300 K, as our structures are designed for mode splitting
of the FP cavity with QW's at low temperatures, but we
expect similar phenomena as the broadening should be

20
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FIG. 3. Reflectivity peak positions as a function of cavity de-
tuning for a five-quantum-well sample at T=5 K. The theoret-
ical fit is obtained through a standard multiple-interference
analysis of the DBR-Fabry-Perot-quantum-well structure.
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Some interesting properties 
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Polariton accumulation under  
non resonant condition 

1-50 ps 

Relaxation is possible thanks to the excitonic part of the polariton 



Bose Einstein Condensation in atoms 

Cornell and Wieman’s groups : 
condensation of Rb atoms 
(1995) 

T 

http://jilawww.colorado.edu/bec/ 

•  m = 104 me 

•  Tc = 200 nK 

n: boson density 



Polariton condensation 

f: occupation factor 

Bosonic stimulation Γrelaxation     α (f+1)  When f exceeds unity : 

Massive occupation of the lowest energy states 

Nature 443, 409 (2006) 
CdTe/CdMgTe cavity 

Also observed in GaAs (10K), GaN, ZnO (room temperature)… 



Playing with polaritons 
Polariton propagation and manipulation: 
thanks to their photonic part polaritons have large coherence length 
 
thanks to their excitonic part, polaritons interact 

Optical Parametric Oscillator/Amplifier 

R. Stevenson, et al, PRL  85, 3680 (2000)  
P. Savidis, et al, PRL  84, 1547 (2000) 
C. Diederichs, et al, Nature 440, 904 (2006) 

Polariton interferometer 

C. Sturm, et al. 
Nat. Comm 5, 3278 (2014) 

Polaritonic molecules 
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Figure 1 | Rabi oscillations and a.c. Josephson effect. a, A polaritonic molecule. The coupling J (0.1 meV) between the lowest energy state (ground state)
of each micropillar (L, R) gives rise to bonding (B) and antibonding (AB) modes. b, Emitted intensity when an off-centred Gaussian pulse at low power
(2.5 mW) excites the system. c, Measured population imbalance (grey line) and phase difference (red dots), showing harmonic oscillations with a
frequency given by h̄!= 2J. The slight asymmetry of the oscillations about z = 0 might be caused by an unintentional difference in the size of the
micropillars. d, The a.c. Josephson regime is achieved by adding a cw beam on top of the right micropillar, which creates a reservoir (shown in yellow)
inducing a static blueshift of its ground state energy. e–f, The larger bonding-antibonding splitting results in faster intensity oscillations (e), and in a
monotonously increasing phase difference (f, red points).

The coupled micropillars used in our studies (Fig. 1a) are
obtained by dry etching of a planar semiconductor microcavity
with a Rabi splitting of 15meV at 10K, the temperature of our
experiments (seeMethods). Each individual pillar has a diameter of
4 µm and presents a series of confined polaritonic states21–23 with a
lifetime ⌧ ⇠33 ps. The centre-to-centre separation of 3.7 µm results
in a tunnel coupling of the lowest energy confined polaritonic states
(ground state) of J = 0.1meV. This double potential well system
can be described by equations (1a) and (1b) with the addition of
a phenomenological decay term9,24, �i( ¯h/2⌧ ) L(R), accounting for
the polariton losses due to the escape of photons out of the cavity,
and with a positive value ofU coming from the polariton–polariton
repulsive interactions25.

The Madelung transformation  L,R(t )= p
NL,R(t )ei✓L,R(t ) allows

us to rewrite equations (1) in their dynamical form4:

¯h
2J

ż =
p
1�z

2(t )sin�(t ) (2a)

� ¯h
2J

˙�= E

0
L �E

0
R

2J
+ UNTe�t/⌧

2J
z(t )+ z(t )p

1�z

2(t )
cos�(t ) (2b)

where z(t ) = NL�NR
NT

is the population imbalance between the
two micropillars (with NT = NL + NR the total population),
and �(t ) = ✓L(t )� ✓R(t ) is the phase difference. E0

L � E

0
R is the

energy difference between the ground states of the left and right
micropillars in the absence of coupling, negligible in our case
as the two pillars are nominally identical. The second term on
the right hand side of equation (2b) contains all the features due
to interactions, and it is the only one that is affected by the
polariton finite lifetime.

To study the different Josephson regimes we excite the system
with a 1.7 ps pulsed laser resonant with the ground state energy
of the micropillars (⇠780 nm). The spectral width of the laser
(0.4meV > J ) allows us to initialize the system in a linear
combination of bonding and antibonding states26 (B and AB in the
figures). We use a 10 µm wide Gaussian excitation spot, covering
the whole molecule. In this geometry, �(0) = 0 and the initial
population imbalance z(0) can be tuned by shifting the spot with
respect to the centre of the molecule.

The light emitted from a single polaritonic molecule is collected
with a microscope objective in reflection geometry and analysed
in energy and time by means of a spectrometer coupled to a
streak camera. To avoid the strong reflection of the laser beam
in our detectors, we select the linear polarization of emission
that is perpendicular to that of the excitation (parallel to the
molecule long axis). The molecules present an intrinsic linear
polarization splitting along a non-trivial direction which slowly
rotates the polarization direction of the injected polaritons27. This
allows us to measure in cross-polarized detection the energy,
population imbalance z(t ) and phase difference �(t ) between the
two sites (see Methods). The polarization splitting is of the order
of ⇠40 µeV, resulting in a polarization rotation that is much
slower (>70 ps) than the Josephson oscillation timescales in our
system (up to 21 ps).

At low excitation density (2J �UNT ⇡ 0), interaction effects are
negligible and the dynamics of the system is entirely dominated by
the tunnel coupling. This is the situation presented in Fig. 1a–c:
coherent oscillations of the population and phase are observed
when the initial population imbalance is z(0)=0.45. The measured
oscillation period of 21 ps coincides with that expected for the
nominal coupling of J = 0.1meV in this molecule. The periodic
oscillations of both population and phase around zero correspond
to the regime of Rabi oscillations of two coupled modes with
1E ⌘ E

0
L � E

0
R ⇡ 0.

A different regime, characterized by a running phase, can be
accessed by inducing an energy splitting E

0
L � E

0
R ⇠> J between

the ground states of the micropillars. To do so, we add a weak
continuous wave (cw) non-resonant beam (730 nm) focussed onto
one of the micropillars (the right one, see Fig. 1d–f). This beam
creates an excitonic reservoir which interacts with the ground
state polariton mode of that micropillar, inducing a stationary and
local energy blueshift of about 0.35meV (see Supplementary Fig.
S2).Nevertheless, particle self-interactions (within the condensates)
remain negligible (UNT ⇡ 0). Figure 1e,f shows that the addition
of this beam results in an acceleration of the oscillations, and
in a phase difference �(t ) which monotonously increases with
time, well reproduced by our simulations (see section D of the
Supplementary Information). This regime is analogous to the so-
called a.c. Josephson effect, in which a constant voltage difference
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Weak coupling regime : the Purcell effect 
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80%	  of	  emission	  coupled	  to	  the	  mode	  for	  Fp=4	  

Efficient and fast photon collection ! 

Gérard et al, PRL 1998, Gayral et Gérard, Journal of Light. Tech. 2000 
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Maximizing the Purcell effect 

Spatial 
matching : 

micropillar 

Ex = E mode QD at the maximum of 
the field intensity 

QD 

optical 
mode & Spectral 

matching : 



JBQ  Grenoble 2009 

An all optical technique : Low temperature in-situ 
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- Scalability  

Pascale Senellart’s group at LPN 
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On demand weak coupling regime 

Planar Cavity factor : Q = 5000 
DBR mirrors with 20-24 pairs 

A.  Dousse, et al., Phys. Rev. Lett. 101, 267404 (2008) 
Research Highlight, Nature Materials 8, 86 (2009)  
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Good Spatial 
Matching ! 

On demand weak coupling regime 

H. Lohmeyer et al., Appl. Phys. Lett. 92, 011116 (2008). 



Around 40 pillars in one 
lithography process 

Scalability 

A.  Dousse, et al., Phys. Rev. Lett. 101, 267404 (2008) 
Research Highlight, Nature Materials 8, 86 (2009)  



Electric control 

Reduce influence of 
outside residual charge 

Control the charge 
inside the dot 

Tune the QD 
emission energy 

n-‐doping	  
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EPFL	  –	  5	  juin	  2015	  

In	  situ	  op6cal	  lithography	  machine	  

Absolute	  QD	  posiHon	  
10	  nm	  

10x10µm2	  

• XY Position sensors 
  (10nm resolution) 

• XY Piezo scanner 
  (30x30µm at 4K) 

• XYZ Piezo stepper 
  positioners 
  (5x5x5 mm) 5 µm 

5 µm 

Lithography	  paMerns	  



An electrical device 

Nowak et al,  
Nature Communication 2014 

Electrical	  control	  
Brightness	  >	  55%	  
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Conclusions 

Material science does drive new fondamental studies 


