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Introduction  

  
 

Applications  

 Microelectronic     
 Solar cells         
… 

Nanotechnology  

 Ultra-thin films                 
 Nanocrystalline materials              
 Nano-wire                          
 Nano-islands 

 … 

Si nano-wires 

Ge quantum dots 

Nanocrystalline 
Si films 



Introduction  

  
 

Nano-materials + nano-objects (10 to 100 nm)              
 3D characterizations (nano-grains, dots, wires…) 

Nano-characterizations 

- Structure                                                                              
2D analysis: HRTEM, HRSEM…; 3D analysis: STM, AFM…)  

- Composition                                                                          
2D analysis: STEM, nano-AES,…; 3D analysis?                 
 APT = 3D chemical analysis at the atomic scale  

 Composition /stress 

 Defects in nanostructures 
(dislocations, clusters…) 

 Interfaces  

 Variations versus directions (3D) 



Introduction: microelectronics  

  
 

Nanotechnology 

 Reduction of material volume and film thickness                                                                               
 Increase of the number of interfaces (+ stress) 

Nanocrystalline layers 

APT measurements 
Pt segregation in Ni2Si GBs 



Introduction  

  
 

Atom Probe Tomography Microscopy 

 Chemical analysis of 3D volumes 

 Atomic scale 

 No need of composition calibrations 

 Composition of interfaces and defects (dislocations, clusters…) 

 Can be directly compared to 3D simulations at the atomic scale 

(Molecular Dynamics, Monte Carlo) 



Punctual electrical charge   
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Field effect   

  
 

Size effect on electrical field  

V = applied voltage between the tip and the electrode                           
R = curvature radius of the tip (~ 50 nm)                                                         
Kf = considers the influence of the specimen/detector geometry ~ 2-7        
F = electrical field on the surface tip  

V = 10 kV, Kf = 5, R = 50 nm               
 F = 400000 kV/cm2 



Atom probe tomography (APT) 

  
 



Ion evaporation: energy barrier 

  
 

Electrical field mediated evaporation: thermally activated  

 = heat of sublimation = total chemical bound energy of an atom of the tip                                                                    
In = ionization energy of the nth electron                                                             
In = ionization energy of the free atom                                                                                                                     
 or e = work function of the emitting surface 

1/ Break the chemical bonds =  

2/ Ionize the atom n times = In 

3/ The n electrons back in the tip = n 

Q0 ~ 10th eV 

with F 

without F 

+  e 



Field evaporation 

  
 

The electrical field F allows to reduce the barrier Q0  Qn 

(             )  required time for evaporation    

evaporation rate  

activation energy    

The expression of the function f(Fdc) 
depends on models, but close to the 
threshold of evaporation, a linear 
behavior was experimentally observed   
 f(Fdc) =Fdc, with  a material-
dependent parameter 



Field evaporation: Athermal model 

  
 

Very low T (20-100 K)  field evaporation only with Qn = 0 

Low temperature Qn  0 to obtain elec. field mediated evaporation 

Fn = evaporation field at zero activation energy = electrical field needed 
in order to cancel the activation energy! 

Qn = 0  



Laser-pulsed APT: Thermal field evaporation 

  
 

0.4 nJ and 20 K for Ge(001) substrate 

 Detect Ge2+ and Ge1+ with a ratio Ge2+/Ge1+ ~ 0.2 (influence of Ge2)                           
 Ge2 molecules are observed in the mass spectrum                                              
 Background noise ~ 1  

Ge2+  
Ge+ / Ge2

2+ Ge2
+  

molecules 



Laser-pulsed APT: Thermal field evaporation 

  
 

0.07 nJ and 20 K for Ge(001) substrate 

 Detect Ge2+ and Ge1+ with a ratio Ge2+/Ge1+ ~ 10                            
 No molecules in the mass spectrum                                                 
 Background noise ~ 1  

Ge2+  

Ge+ 



Laser-pulsed APT: Thermal field evaporation 

  
 

Ge(001) substrate 

0.07 nJ 

If the temperature/laser power increases 

 The width of the mass spectrum peaks increases(loss of resolution)    
 The ratio X2+/X1+ changes: X2+ decreases while X1+ increases            
 Molecules can appear in the mass spectrum (complexification)          
 Usually APT experiments occur in the thermal field evaporation regime 

0.4 nJ 

Ge+ 

Ge+ 

Laser power reduction 0.4  0.07 nJ  20% reduction of the Ge peaks’ FWHM  



Post ionization 

  
 

Q2
 

1/ Atom evaporation with the charge +1  Q1    
Q1 < Q2 

2/ Atom post-ionization getting the charge +2 



Post ionization 

  
 

One dimension tunneling model  at 0 K (no laser pulsing) 

F = electrical field                                                                                   
Zc = post ionization critical distance between the ion and the tip surface                                    
 = zero field electron work function of the surface                                                   
In+1 = ionization potential of the n times charged ion 

1/ atom pulled from the surface: 
lose 1 or more electrons 

2/ ion reach Zc: 1 or several post-
ionizations 

3/ ion flight 

+ 

+ 

e 



Post ionization 

  
 

Model I 

Vmodel = tunneling potential of the considered electron                                                                                   
Ze/r = electrostatic potential at distance r from the ionic nucleus                                                            
Z = effective nuclear charge seen by the tunneling electron                                        
r: measured from the nucleus of the ion                                                             
 = the field direction 

The energy level of the least tightly bound electron in the ion is not 
shifted from its zero field value of In+1 

Equations’ notation 

ħ = me = e = 1 (me = electron mass)               
Energy unit: the hartree (27.2 eV)               
Length unit: the Bohr radius (0.053 nm)           
unit of field strength: 514.2 V nm1 or 51.42 V Å1 

In the equations the field strength is in V nm1 



Post ionization 

  
 

Model II 

 = screening penetration length of the electric field beyond the surface                                                                                 

The energy level of the least tightly bound electron in the ion is shifted 
from its zero field value: due to the field effect (EStark) and due to the 
ion and electron image potentials (Eimage) 



Post ionization 

  
 



Post ionization 

  
 

 Post-ionization occurs at or near the evaporation fields of 
most, if not all, metals  

 Field evaporation may occur as a two-stage process 

 Post ionization does not influence the initial evaporation and 

does not affect the rate at which evaporation occurs at a given 
field strength 

 The total number of evaporated ions is dependent on the 

initial field evaporation, while their charge state is dependent on 
post-ionization 

 T and F (depends on the shape of the tip) at the very top of 

the tip are unknown during experiments, thus, the ratio between 
2+ et 1+ peaks in the mass spectrum can be a good indication 
of evaporation conditions (repeatability) 



Post ionization 

  
 

Calculated field  ratio of ions of  

  different charges 

Experimentally  evaporation field can 

  be deducted from the 

  ratio of  ions of  

  different charges 



Post ionization 

  
 



Atom probe tomography (APT) 

  
 



APT: electrical or laser pulses 

  
 

Electric- or laser-mediated ion evaporation  

Electrical pulses: conductive materials                                                  
Laser pulses: semiconductors and dielectrics 

~ T 



APT: ion identification 

  
 

Time of flight mass spectrometry 

M = ion mass, n = ionization degree, L = flight distance, e = elementary 
charge, tv = time of flight, V = electrical potential applied on the tip 

Si+1 

Si+2 

O2
+1 

O2
+2 

SiO2 film
 



APT: 2D detection in real space 

  
 

X = Vx  (tLEFT  tRIGHT)/2
 

Y = Vy  (tDOWN  tUP)/2
 

Delay line detector 

 Single ion hit on micro channel plate  electron cloud (~ 50% of ions)                           
 Electron cloud on delay lines  X:Y coordinates 

Delay lines X and Y 

40 mm diameter 
MCPs in a chevron 
configuration Cu  Vx = Vy ~ 1.4 ns mm1 



APT measurements 

  
 

P = 1.4  1011 Torr, T = 20-80 K, Pulse rate = 100-250 kHz, evap. rate = 0.2-1%, laser power = 0.01-3 nJ 



APT measurements 

  
 



APT: 3D reconstruction 

  
 

 APT microscopy “Raw” data = sequence of hit records 

 
 
 
 
 
 
 
 
 Reconstruction = process that transforms Raw data into the 3D 

volume (of the tip) containing the atoms 

Hit number, XDetector , YDetector , tPulse, VSpecimen  

Ion number, XTip , YTip , ZTip , Mass  



APT: Stereographic projection  

  
 

Ion trajectory 

 Experimental distance dpole between the observed crystallographic 

poles corresponds to the stereographic projection of the sample crystal 
structure with a constant center                                                                                              
 m can be determined experimentally considering the ratio between 
crystallographic angles observed in APT data ( = arctan dpole /L0) 
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Gault et al., JAP 105 (2009) 034913 Gault et al., Ultramicroscopy 111 (2011) 448 

Electrostatic simulations of the potential around the 
tip (shank angle = 10°) and of the ion trajectories  

cfc 



APT: 3D reconstruction 

  
 

Ion trajectory 

 Almost stereographic projection with constant center 

 Magnification (M) proportional to the ratio between the tip-to-detector 
distance (L0) and the tip radius of curvature (R0)  few cm and M > 1M 

 Compression due to tip shape + elec. Field  m compression factor 

Ion 
trajectory 

Electrical 
field 

  0

0

1 Rm

L
M






APT: voltage reconstruction 

  
 

 Knowing the ion tip-to-detector trajectory (stereographic projection 

corrected by a compression factor), we can deduce the reverse ion 
trajectory (detector-to-tip)       
  

 Ion with straight trajectory  direct relationship between each position 

(Xtip, ytip) on the tip surface and the position (Xd, Yd) on the detector 
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APT: voltage reconstruction 

  
 

 During the specimen evaporation, the radius of the tip progressively 
increases, since the shank angle  of the tip is > 0 
                                                                                                                                                                                                                                               

 The variations of the tip radius can be determined using the relation 

between the elec. field, the elec. potential and the radius 
 

Evap. field factor Kf = const for a given material (evap. equilibrium shape) 
F = const for a given material + conditions of evaporation (evap. rate) 

 

Field effect equation 
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APT: voltage reconstruction 

  
 

 Assume that the volume Va of a detected atom is removed equally 

across the tip surface Stip = the volume of a single atom is spread over 
the entire tip surface 
 

 Not all the atoms are collected   = detector efficiency 
 

 The depth location dz of an atom in the tip can be determined knowing 
the volume  of the considered atom, and knowing the surface of the tip 
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APT: voltage reconstruction 
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 The evaporated surface of the tip can be determined knowing the 

surface of the detector Sd and the magnification M 
 

 The atomic positions in-depth are progressively built in the plane 

normal to the specimen apex 
 

 In order to reconstruct atomic positions at the specimen surface, a term 

dz’ is added to account for the curvature of the tip = projection of the ion 
orthogonally onto the spherical cap beneath the apex plane 
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APT: shank angle reconstruction 

  
 

)(
)sin(1

)sin(





f

dz

dR





 If the tip shank angle  is constant, the variation of R versus the depth 
z can be expressed using classical geometry laws (in general 2    10°)   

 

 The same method as for voltage reconstruction is used for Z variations 
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 Use geometrical relations to determine the position of the atoms on the 

surface of the tip, knowing the distance L between the tip and the 
detector, the ICF m, the curvature radius R of the tip, and the ion 
coordinates on the detector (XD, YD)                                                                                                                                                                                                                                                

APT: shank angle reconstruction 



  

 The Reconstruction procedure works well but…generally used in not 
suitable cases!   samples made of different materials exhibiting different 
F, R and  (multilayers, clusters…) 

APT: 3D reconstruction 

Ga grain boundary segregation in a nano-
crystalline Al thin-film. The atomic planes 
are resolved up to the grain boundaries 

3D reconstruction based on: 
- Single evaporation field F 
- Single curvature radius R 
- Single shank angle  

Gault et al. Mat. Today 15 (2012) 378 



Atom probe tomography 

  
 
 Magnification ~ 106 times = 10 millions 

 Lateral resolution (T < 100 K) ~ 0.05-0.3 nm 

 

 

 

 Depth resolution < 0.07 nm in best cases 

 Field of view ~ 50-250 nm 

 Analyzed depth up to 0.5 µm (depends on tip 

fracture) 

Thermal term (principal) + Heisenberg incertitude 



APT improvements 

  
 

 With the local electrode, the voltage is applied between the sample 

and the LE, i) allowing to apply a lower voltage on the sample for the 
same elec. field (decrease of sample fracture probability and improves 
mass resolution), ii) allows to use arrays of pre-shaped tips improving 
sample preparation and sample preparation time saving, by giving the 
capability to select the evaporation of a given tip among several  

 

 The reflectron lens allows to multiply by ~3 the flight path length of 

ions, allowing to significantly increase mass resolution 



APT: sample preparation 

  
 

 Bulk metallic materials can be prepared by electro-erosion, but for 
semiconductors and for the main part of nanotechnology materials 
(nano-layers, nano-wires, quantum dots…) the samples need to be 
prepared by Ga+ focus ion beam (FIB) 
 
 Similar to field evaporation, differences in materials’ erosion 
properties complicate FIB sample preparation 
 
 Need weak ion beam (2-5 kV) to minimize Ga contamination and 

sample amorphization 



APT: sample preparation 

  
 

3/ Carve the a sample wedge  

1/ Ni sputtering    
2/ Pt deposition 



APT: sample preparation 

  
 

4/ Lift off the wedge  5/ Attach wedge pieces on 
pre-shaped posts  

Omni probe 

Pre-shaped posts 

wedge 

Pt injector 



APT: sample preparation 

  
 

5/ Attach wedge pieces on 
the pre-shaped posts  

wedge 

Omni probe 

Pt 
deposition 

Pre-shaped 
post 

Cut the 
wedge 

APT sample 

Join wedge + post   

Attach     
wedge + post 



APT: sample preparation 

  
 

6/ Shape the tips  

Pt 

Pt 

sample 

post 



APT: sample preparation 

  
 

Ni cap 

Sample 



Reconstruction tools 

  
 

Spatial distribution map (SDM) 

Atomic plane 
distance 

Ge(001) substrate 



Reconstruction tools 

  
 

Mass spectrum identification 

Proportion of isotopes 

Mass spectrum 

Si2+ 

Ge2+ Ni2+ 

O+ 
H2O

+ 

Si+/Ni2+ 

Si+ 



APT data analysis 

  
 

3D qualitative analysis 
Buried Ge islands 

 Ion selection, clipping, plan-view and cross-section view 

Gay dot: Si atom 
Green dot: Ni atom 
Red dot: Ge atom 



APT data analysis 

  
 

3D qualitative analysis: Examples 

Purple dot: Mn atom 

cross-section                                          plan-view 

TEM 

APT 

Ge(Mn) nano-columns 



APT data analysis 

  
 

Quantitative measurements: Region of interest (ROI) 

ROI 

Gay dot: Si atom 
Green dot: Ni atom 
Red dot: Ge atom 

Buried Ge islands 

 Definition of a volume of interest for data analysis 



APT data analysis 

  
 

Exporting region 

Gay dot: Si atom 
Green dot: Ni atom 
Red dot: Ge atom 

Buried Ge islands 

 Allows for example to define the mass spectrum of a given volume 

sample taken from the global APT volume (noise study, peak overlaps…) 



APT data analysis 

  
 

Quantitative measurements: 1D concentration profiles 

I 

II 

I 

II 

Buried Ge islands 



APT data analysis 

  
 

1D concentration profiles: Examples 

Purple dot: Mn atom 

Ge(Mn) nano-columns 



APT data analysis 

  
 

Quantitative measurements: 2D concentration map 

Max (red) = 0.17% 
Min (blue) = 0.0% 

Gay dot: Si atom 
Green dot: Ni atom 
Red dot: Ge atom 

Projection 
plan 

Buried Ge islands 



APT data analysis 

  
 

2D concentration map: Examples 

2D Si atom distribution surrounding 
a single Si cluster 

Gray dot: Si atom 
Green dot: Ni atom 
Light blue: O atom 

Si clusters in a SiO2 thin film 



APT data analysis 

  
 

3D                         2D                           1D 

Ge concentration in the core of a Ge “dome” island 
2D concentration map: Examples 

 1D profile  Ge concentration in the island core ~ 50% 
 2D map  Ge concentration in the island core ~ 55% 



APT data analysis 

  
 

Iso-concentration/iso-density surfaces 

4% Ge 

Buried Ge islands 



APT data analysis 

  
 

Iso-concentration surfaces: Examples 
Ge(Mn) nano-columns 

TEM 

cross-section 

 Concentration gradients 
 nano-columns richer in Mn in their core and closer to the surface 



APT data analysis 

  
 

Iso-concentration surfaces: Examples 
Mn5Ge3(C) layer grown on Ge(111) by reactive diffusion 

 Delimitation of different phases (phase selection for data analysis) 



APT data analysis 

  
 

Iso-surfaces: cluster detection 

Blue dot: O atom 
Green dot: Si atom 
Red volumes: silicon-enriched 
regions in SiO2 matrix 

Si nano-clusters in a 
SiO2/Si(001) layer 

B nano-cluster in a 
SiO2/NiSi/SiO2/Si(001) layer 

Blue dot: B atom 
Green dot: Ni atom 
Black dot: Si atom 
Blue volumes: isodensity 
surfaces = 0.65 B at nm-3 



APT data analysis 

  
 

Quantitative measurements: proxigram 

Average composition calculated 
along the directions perpendicular 
to the defined iso-surface 
 
 
 
 
 
 Allows the curvature of an 

interface to be taken into account 
in the 1D concentration profile 

Max ~ 13% 

Max ~ 21% 

~ 4 nm 

~ 2 nm 

Buried Ge islands 

proxigram ROI 

interface 

thickness 



APT data analysis 

  
 

Proxigram: Examples 
Cluster composition 

Mn-Ge nano-clusters in poly-Ge 

Island average size ~ 2 nm 

- Average cluster size 

- Average cluster 
composition  



APT data analysis 

  
 

Plane view 

Island average size ~ 5 nm 

Si-pure island core ~ 1.5 nm 

Si nano-clusters in SiO2 

Proxigram: Examples 
Cluster composition 



APT data analysis 

  
 

Quantitative measurements: atomic radial distribution 
Mn-Ge nano-clusters in poly-Ge 

 Investigation of atom distribution, here up to 4 nm a Mn atom has ~10 

times more Mn and C atoms than Ge atoms in its vicinity  



APT data analysis 

  
 

Quantitative measurements: cluster analysis 
W atoms in Si 

 Even if clusters cannot be observed using iso-surfaces, statistical 

studies can be performed on the atomic distribution in the APT volume 
lading to the detection of clusters (number, size, composition…) 



APT data analysis 

  
 

Cluster analysis: Examples 
Sb atoms in Sb- and P-doped Ge grown by MBE 



APT: some issues 

  
 

 Sample fracture due to the stress applied to the tip during electrical 

or laser pulsing (electrical force and/or temperature diffusion effects), 
and due to interface weakness in multilayer films 
 

 Detection limit ~ 1018 at cm3: APT allows atomic scale analysis but 

despite that 50-40% of all the atoms present in the sample are 
collected, the detection limit is limited by the small size of the probed 
volumes (1019 at cm3 ~ 1 at in 100 nm3) 
  

 Mass resolution (overlapping peaks in the mass spectrum) can 

depend on analysis conditions (too high laser energy for example) 
 

 Evaporation of some materials can occur via molecule formation       
 complex mass spectra (complex ion identification)  
 

 Need references (film thickness, flat interfaces) in order to perform 
the best 3D reconstruction  best reference = atomic planes 
 

 Reconstruction procedure considers a single evaporation field F (= 1 

homogeneous material), but samples can be made of several materials  
 

 Best analysis conditions can be different for different materials 
(oxides, metals, semiconductors…)  alloys, multilayer films…  



APT issues: multiple hits 

  
 

 Ions from close regions on the tip can arrive at the same time on the 
line detector 
 If the two hits are enough far apart on the detector, two signals are 
detected but it is difficult to define which signal belongs to which ion    
 dedicated algorithms can separate some of the ions 
 If the ions are too close on the detector, a single signal instead of n 
can be detected on some lines, preventing to differentiate the n ions    
 a single hit is counted instead of n!  C = C/n!! 



APT issues: surface diffusion 

  
 

 Due to the low temperature of analysis (20-80 K), surface diffusion is 

not a problem in general, but in some cases some of the atoms may 
diffuse on the tip surface and evaporate preferentially on sites of 
smaller curvature radius  wrong atom distribution 

Grain 
boundary  

Surf. diffusion  

Evaporation close to 
a surf. defect  



APT issues: local magnification 

  
 

 V = const: evaporation at surface regions of smaller curvature radius 
 

 Regions of higher evap. field (Fe) need smaller radius for evaporation 
 

 Case of an homogeneous matrix with Fe
M containing clusters with Fe

C  
 the density of atoms in clusters will be different from in the matrix, 
and the size of the clusters will not be the real one 

Fe
M > Fe

C               

Density             
Size   

Fe
M < Fe

C               

Density             
Size   

atomic density 

--- Normal ion trajectory 

     Effect of F difference 



APT issues: local magnification 

  
 

 Significant evaporation field difference promotes curved interfaces 

Blue dot: O atom 
Green dot: Si atom 

Red volumes: Si clusters 
Continuous volume: Si substrate 

Interface between Si and SiO2 Interfaces between 
different Mn-Ge phases 



APT issues: local magnification 

  
 

 Difference of curvature radius promotes atomic density variations and 

distance/thickness variations 

Grain boundary 
effect in poly-Ge 

Grain boundary effect in poly-Ni2Si(Pt) 

Blue dot: Pt atom 



APT issues: molecules 

  
 

Mn5Ge3(C) layer grown on Ge(111) by reactive diffusion 

 Inform on atom neighboring (molecules not formed after evaporation) 



APT issues: heat flow 

  
 

Buried Ge islands on Si substrate 

0.5 nJ and 40 K on Si substrate 

 Detect Ge2+ and Ge1+ with a ratio Ge2+/Ge1+ ~ 4.44                            
 No Ge molecules in the mass spectrum                                              
 Background noise ~ 1-2  

Ge2+  

Ge+ 



APT issues: heat flow 

  
 

Ge layer grown by MBE on SOI 

0.2 nJ and 40 K on SOI substrate 

 Detect Ge2+ and Ge1+ with a ratio Ge2+/Ge1+ ~ 0.5                            
 Wider Ge peaks in the mass spectrum                                              
 Higher background noise ~ 6-10  



APT issues: heat flow 

  
 

0.2 nJ and 40 K on SOI substrate 

 Detect Ge2 molecules in the mass spectrum 

Ge layer grown by MBE on SOI 
Ge2+  

Ge+ / Ge2
2+ 

Ge2
+  

molecules 



APT issues: heat flow 

  
 

0.03 nJ and 20 K on SOI substrate 

 Detect mainly Ge2+ with a ratio Ge2+/Ge1+ ~ 670                              
 No more Ge molecules in the mass spectrum                                              
 Background noise stays high ~ 10, specially between peaks ~ 40-100  

Ge layer grown by MBE on SOI 

Ge2+  
Ge+ 
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