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1.Introduction

Technical innovation often requires new materials.

Purified Si  Semiconductor Industry, IT 

iPS cells  Regenerative Medicine

GaN Blue LED  photonic & electronic industry

Most of new materials are in solid, crystalline form.

Growth of high quality crystals is required.

To know how to grow crystals or how crystals grow.

 Some basic concepts of crystal growth

NaCl Pyrite snow

snowiceSrCO3

Various crystal shapes
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Succininitrile

Polystyrene Si

Ag

MnO2

NH4Cl
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Overview

2. Equilibrium :

equilibrium crystal shape(ECS) 

minimum of energy, Wulff theorem

thermal fluctuations  roughening transition

3. Kinetics :

Birth of crystal nucleus 

ideal growth laws

Non-ideal laws

Spiral growth

2D nucleation growth
6

2. Equilibrium Properties

2.1 Phase diagram

At a given temperature T 

and a pressure P, 

one phase is stable which has

a minimum Gibbs free energy

G(T,P,N), or 

a minimum chemical potential 

m(T,P)=G/N.

When two phases have equal m’s, they coexist.
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At the melting temperature TM(P), 

Below TM(P), solid is stable. 

Driving force of the crystal growth

Temperature variation of chemical potentials 

of liquid and solid at a fixed P.

So far for bulk phases.

When crystal is born, surface plays the role. 8

Experiment on ECS:

NaCl by Metois & Heyraud    (JCG 84 (1987)503)

710  C620 C

Polyhedron at low T Facet connected to 

curved surface at high T

2.2 Equilibrium Crystal Shape (ECS): 

2.2.1 Wulff theorem

Below TM crystal is stable, but creation of

a crystal nucleus  costs interface free energy. 

Minimize total free energy: 

Height variation dhi  Area variation dAi

３D Polyhedral nucleus

dV

; Volume

;  Molecular solid volume

Ai; Area of a surface with a

normal ni

gi;  surface free energy per area

9

F.e. minimization: 

Wulff’s theorem
10

Wulff construction; orientation dependent g ECS

1. Draw a vector OP= lgn from the origin O.

2. Draw a surface PQ perpendicular to OP.

3. Vary directions n, and take an envelop of PQ (red).

It gives the equilibrium crystal shape (ECS).

Wulff theorem:  for a position r on a surface normal to n

ECS

11

2.2.2 ECS of an island on an adsorbed wall

Surface normal to n2 is

in contact to a wall W,

with an interface area A2. 

Wall surface with gW

disappears, and

an interface with gW2

is formed. 

G minimization determines the distance hw2

from O to the interface as  

12

Three types of wetting:

Complete dewetting:

Complete wetting:

Partial wetting:      Bulk ECS cut in the intermediate

CD: PW: CW:
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Experiment on ECS:

NaCl by Metois & Heyraud    (JCG 84 (1987)503)

710  C620 C

Polyhedron at low T Facet connected to 

curved surface at high T

Facet size? 

Facet connected to smooth curve?

2.2.3 facet size

14

Orientation dependence of surface free energy g(q):

If g is isotropic (indep. of q ),  ECS is a sphere.

What determines the anisotropy of g?

Vicinal surface with a small inclination q

g0: terrace free energy per area

b0: step free energy per length

Surface free energy of a vicinal surface

Facet size and the step free energy

Wulff theorem

facet

O

; facet size

; step energy/length

step free energy    facet size 

Facet size is independent of the neighboring vicinal. 

Height to the facet: 

Width  of the facet:

15
16

On a vicinal surface with an average step separation l,

steps are thermally fluctuating.

.

Surface inclination: 

:  step energy

eK:  kink energy

2.2.4   facet connected by curved surface

Step fluctuation induces free energy cost or interaction.

Top view

high
low

Step interaction contributes to g(q).

17

While a step runs a distance y, it fluctuates laterally as

eK:  kink energy cost 

for n=+1 or -1

Elementary fluctuation of a step running in y-direction

Probability of kink at finite T;

Lateral variance is proportional to a step length.

step

18

Top view of  fluctuating steps.

.

Step free energy: 

where 

When                                 , neighboring steps collide.

Since steps cannot cross, entropy decreases and

free energy increases by kBT for each collision.

Step separation l: 

:  step energy

eK:  kink energy



4

19

Vicinal surface with fluctuating steps

20

Connection to the smooth surface

Wulff’s theorem:

Differentiate by 

Then,

or
Equilibrium 

shape

Close to singular surface 

hi

ni

O
x

z

21

z

x
O

Facet size xf is proportional to the step free energy b0

Facet connects smoothly to round surface.

For positive x with a negative slope 

22

g(q)g0

q

g(q)
g0

q

polar plot of g-q (g-plot) with and without singularity

Cusp singularity in g

 facet with a size ~ b0

No singularity in g

 no facet in ECS

Roughening transition

where

23

g(q) of Pb island on Graphite

q

Heyraud & Metois,  SS (1983)

q

<100> <110><111>

T

<100>

<111><110>

24

ECS of 4He

Crystal growth from superfluid

Latent heat ~0 

Large heat trasnsport

 Equilibrium shape

(Balibar et al, RMP 2005)

1.4K 1.1K

0.5K
0.1K

surface may cost more energy.
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g(q)g0

q

g(q)
g0

q

polar plot of g-q (g-plot) with and without singularity

Cusp singularity in g

 facet with a size ~ b0

No singularity in g

 no facet in ECS

Roughening transition

where

29

Singular surface: 

Facet has a low surface energy, without entropy gain.

At T>0, rough surface gives contribution to entropy         

Roughening ~ ad-islands or vacancy islands 

~ surrounded by steps

Low T High T

2.3 Surface thermal roughening transition

When will the step free energy vanish?

30

MC simulation of 

Solid-on-Solid model

no vacancy, 

no overhang

surface height 

Leamy et al. (1975)

kBTR=0.632J

1

2

z-1

a

trerace step

kink

Free energy cost to create a monolayer island

At T=TR=J/2kBln(z-1), step free energy vanishes: b0=0.

z: coordination 

number

Consider an island enclosed by a step loop of length L.

Energy cost:

Entropy:

 Step free energy:

J: NN bond energy

20

2.3.1 roughening transition in a mean field picture

32

Step free energy

T<TR

T>TR

L
0

； F is minimum at L=0,  no island, flat

Roughening  Transition

Close to TR, many steps interact with each other.

b0 =0 above TR. Step has a meaning only below TR.

TTR

Surface free energy density

g ( q, T)=  g0 + (b0/a) |q|    … T<TR

=  g0 + g2 q2             … T>TR

:  Singular

:  Analytic

； F is minimum at L=∞,  many islands,

rough

Fs=b0 L

33

T

b, e, s

TR

Step energy:

entropy:

Step free energy b has 

an essential singularity for T < TR;

and b=0 for T  TR.

4He

b
TR

• Kosterlitz-Thouless renormalization group
“A modern approach to critical phenomena”  

I. Herbut (Cambridge,2007)

2.3.2 Roughening transition by sophisticated analyses
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Height correlation of rough surface

Surface stiffness :

finite     for  analytic   g: T  TR

infinite  for  singular   g: T < TR

The description has meaning only above TR

For a rough surface:

For an atomically smooth surface?

diverges for r 

height difference fluctuation:

Rough surface:  G(r) diverges at large separation

Two-Dimensional Island 

on a Flat Surface

Total free energy:

r

b:  step free energy density

Small islands                                are thermally excited. 

For r  ,  every island between two points is closed:

G(r) should be saturated.

Between two points separated by r  , heights behave 

like on a rough surface:

Correlation function below TR

39

40

Height correlation function G by MC simulation:

~ log r

G(r)

T > TR,   = 1 

T < TR,  = finite

YS. H.M-K, 

Phys. Rev. B (1981)

2.3.5. Experiment on height correlation

Ag(115), STM

G (r)

r (  7.5A)

Hoogeman et al.

PRL 82(1999) 1728

41

T

42

Universal behavior:
43

Summary of thermal roughening

1. Singular surface undergoes roughening transition

at TR in equilibrium.

2. Below TR, step creation costs a finite free energy     .

3. Above TR,                 and  step looses meaning.
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3.1 Birth of crystal

3. Crystals out of Equilibrium; Growth Laws

Free energy cost for nucleation

; Volume, ;  Molecular volume

Ai; Area of a surface with a

normal ni

gi;  surface free energy per area

Minimum in shape variation Wulff theorem 

3.1.1 Homogeneous nucleation

46

Free energy versus nucleus size
Assume that a nucleus shape is ECS, but size differs.

where 

Then, 

with 

; form factor 

; typical surface tension

G is maximal at  a critical volume 

size scale

47

A nucleus with a volume  smaller than V* melts back, 

but  if  thermal fluctuation allows  a volume 

to exceeds V*, the nucleus grows.

Nucleation rate per unit volume and time 

48

3.1.2 Heterogeneous nucleation

If crystal wets wall, nucleus is cut in the middle.

Thus, volume of critical nucleus decreases.

Since the nucleation barrier is proportional

to the critical volume,

the nucleation barrier also decreases.

Homo Hetero

52

After birth or nucleation, crystal nucleus starts to grow.

We consider a large crystal growing with a flat front.

Then, what is its velocity?

Driving force of crystal growth = chemical potential

Ideal case with fast surface kinetics (rough surface):

Growth velocity V is proportional to the driving Dm :

3.2 Ideal Growth
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Melting temperature

3.2.1 Growth from undercooled melt

→sol-liq coexist

→crystallization

⇒ driving force：

undercooling：

: Latent heat
53

Solidification: Liquid  Solid:

a; Atomic unit

v; Thermal vibration frequency

Ed ; Energy barrier to change position

exp(-Ed /kBT) ; Probability to jump over energy barrier

WS/WL=exp[-(sL – sS)/kB]; 

Ratio of crystalline configuration

Melting: Solid → Liquid: 

D m = m L –m S ;chemical potential difference

Energy landscape

at solid-liquid interface 

54

Large η

Kinetic coefficient：

η： liquid viscosity coefficient 

No driving
⊿μ→０

T - dependence of V：

55

⇒ net growth rate：

Wilson-Frenkel formula

At a small Dm; 

Stokes-Einstein equation

3.2.2 Vapor growth

Crystal grows by molecular deposition from vapor.

Maxwell-Boltzmann distribution：
velocity of a gas molecule v

PV=NkBT

→ density n=P/kBT

Deposition flux per area and time： F(P, T)

Ideal gas at 

a pressure P and

a temperature T

56

depositing from above to the surface z=0： vz<0

deposition rate：

57

Net growth rate: Hertz-Knudsen formula

where Peq (T); equilibrium pressure.

Evaporation flux balances deposition flux at saturation.

V is proportional to overpressure.

At a small driving force：

58

Hertz-Knudsen growth law：

with a kinetic coefficient：

Chemical potential of an ideal gas：


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3.2.3 Anisotropic Kinetic coefficient： Growth shape

Ideal growth velocity of a surface normal to n

After a time t, neglecting the initial transient,  

~  Wulff theorem of ECS

kinetic Wulff theorem    

60

Growing shape： Melting shape：

Monte Carlo simulation:

Growth shape is covered by slowest faces:

V

V

Melting shape is covered by fastest faces:

61

With a flat singular surface,  

crystal growth deviates from ideal laws . 

3.3 Non-ideal growth laws

An isolated atom adsorbed on a flat surface

evaporates easily.

Atoms adsorbed on a flat surface should be 

incorporated in steps and in kinks. 62

How steps and kinks are provided on a flat surface?

There are two main mechanisms;

1) Two-dimensional nucleation and growth

2) Spiral growth 

63

3.3.1 Two-dimensional (2D) nucleation

Below TR, surface is singular and flat.

With a finite driving Dm, a 2D crystal nucleus is formed.

r

b:  step free energy

v
Assume an isotropic step

free energy b

 Circular nucleus

Nucleation free energy barrier  nucleation rate?

Step velocity?

Nucleation rate

rv

Free energy barrier:

Critical radius:

Nucleation rate per area per time:
64

b:  step free energy

Free energy cost:

where:
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Step velocity

rv

Step velocity for a  rough step: 

ideal linear law

; Critical radius

; Velocity of a straight step

65

b:  step free energy

Free energy cost:

where:

66

Growth rate by multiple nucleation on a surface area A

Let the time necessary to complete monolayer be t.

Number of nuclei in an area A in time t :

Area swept ：

 

Crystal growth rate：

67

Experiment: 4He

b

TR

T



Step free energy of 4He

68

3.3.2 Spiral growth

Actual crystals contain defects, as a screw dislocation.

Screw dislocation.
Spiral on SiC 

(Sunagawa).

Radius of curvature r

decreases to the center.

r should be larger than 

the critical value rc.

69

Archimedes SpiralInner circle with r=rc



Step is moving with a step velocity.

Step separation for large q is 

Normal growth rate is.

Faster than nucleation and growth. 70

3.4 Morphological Insｔability

Above TR ideal growth is expected, 

but there is another effect: Morphological instability.

With a rough surface, surface kinetics is fast, but

transport in the environment  matters;

heat conduction, or concentration diffusion

Ideaｌ growth.

Spiral growth: 

Nucleation-growth: 
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Morphological instability by Mullins-Sekerka

Crystal with a flat front is growing in undercooled melt.

 Due to latent heat release, interface is warm; Ti> T∞.

 Flat interface is unstable to deformation.

Isothermals around 

a flat front

Near the tip, 

large temperature gradient

⇒ fast heat release

⇒ fast growth ⇒ instability

＝protrude ⇒Crystal Crystal

78

V

NH4Br

With anisotropy tip is stabilized. 

⇒Regular dendrite tip grows in the direction of 

small interfacial stiffness. (small recovery force)

Simulation Succinonitrile
Viscous finger

+ anisotropy
88

Morphological stability ⇒ Pattern formation

Fractal

Dendrite
Skeletal

Polygonal

89

NaCl Pyrite snow

snowiceSrCO3

Actual crystal shapes

90

Succininitrile

Polystyrene Si

Ag

MnO2

NH4Cl
91 92

4. Coarsening

4.1 Geometrical selection

Number of grains N decreases

as height h increases.

(1+1)d: 

(2+1)d:

Mean Field Approx.

On cold wall, many crystal grains are nucleated.

Grains that grow perpendicular to the wall 

cover tilted grains. 

Thijssen, Knops, Dammer (1992)



12

93

4.2 Ostwald ripening

4.2.1 Evolution of a single spherical nucleus

Stationary concentration distrtibution

Local eq. at interface

Radial velocity

Critical radius;

supersaturation;

4.2.2 Ostwald ripening
As many crystals grow in a closed system, 

average concentration c∞ decreases to ceq,

and critical radius Rc(t) increases.

If two crystal nucleus with different size R1 > R2 
are growing,  D decreases  and Rc increases, 

When R1>Rc>R2.

larger crystal grows at the cost of smaller one.
Ostwald ripening.

R1 R2

95

4.2.3 Lifshitz-Slyozof-Wagner theory

How would the Ostwald ripening proceeds

as a function of time?

We assume that the characteristic nucleus size 

R(t) increases in proportion to Rc(t).

Assume that ratio a=R(t)/Rc(t) remain constant.
.

Rhs is maximum at a=3/2

with a value 4D/27. 96

.
The critical radius increases as 

And characteristic crystal size increases as 

R(t)=1.5Rc.

More quantitative and correct analysis is

provided in terms of size distribution: p(R,t)

by LSW.

Characteristic size is the maximum size. 

97

The scaled size distribution for                    is

98

Thank you very much for your attention!


