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Calculations of the nucleation and growth of thin films are presented. These atomistic calcula-
tions depend on adsorption (E,), diffusion (E,), and lateral binding (E,) energies. A simplified pair
binding model of small two-dimensional clusters is used to make the calculations explicit for
layer-plus-island (or Stranski-Krastanov) growth systems. Within such a model it is found that at
least a crude (Einstein) representation of surface vibrations is needed to make reasonable predic-
tions at low supersaturation. The calculations are applied to extract parameter values from nu-
cleation and growth experiments on Ag/W(110), Ag/Mo(100), Ag/Si(111), and Ag/Si(100), and for
rare gases onto various (plated) substrates. Comments are made about the parameters obtained for
these systems, and about the role of surface crystallography and defects.

I. INTRODUCTION

Nucleation and growth processes are responsible for
the structure of thin films grown on surfaces. It is gen-
erally accepted that there are three types of growth pos-
sible, in the simplest cases when there is no interdiffusion
between deposit and substrate. The extensive experi-
mental work which has been done to test our ideas about
these processes has been reviewed.'

In the much-studied island, or Volmer-Weber, growth
mode, small three-dimensional (3D) clusters form direct-
ly on the bare substrate. In the layer, or Frank-van der
Merwe, growth mode, it is expected that two-
dimensional (2D) clusters will form on each layer, pro-
vided that the spacing between nuclei is small in com-
parison to the spacing between steps on the surface.

In the layer-plus-island, or Stanski-Krastanov (SK),
growth mode the simplest picture is that the layers form
first, and that the islands grow from two- or three-
dimensional clusters on top of the intermediate layer(s).
This is illustrated schematically in Fig. 1. This figure
also points out that the experimental variables are the
substrate temperature T and the arrival rate R, and indi-
cates important energy parameters. In practice, it seems
that the SK mode is quite close to layer growth, and
that the growth of islands can sometimes proceed along-
side further layer growth. In this case, it seems reason-
able to consider the nuclei to be 2D clusters, with con-
version to 3D islands taking place at a later stage.

The purpose of this paper is to present a simplified nu-
cleation theory of 2D clusters which can be applied to
layer and SK growth modes. In these modes, the depos-
its often grow at relatively low supersaturation values,
S=R/R,, where R, is the reevaporation rate of the
bulk deposit at the given temperature 7. In such condi-
tions the chemical potential driving force for condensa-
tion Ap=kT InS is also small. It is shown here that to
ensure self-consistency for small S values, explicit ac-
count must be taken of surface vibrations. Calculations
within the Einstein model are presented to illustrate this
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point. These calculations are then used to abstract pa-
rameters from both Ag and rare-gas deposition systems.
The results for Ag have recently been described in out-
line, in the context of a recent conference review;’ here
the details needed to understand such results are given
and discussed.

The theory is used to make specific predictions for the
stable cluster density n,(R,T) which can then be com-
pared with the experimental (maximum or saturation) is-
land density N(R,T). For complete condensation condi-
tions the predictions depend on diffusion (E,) and lateral
binding (E, ) energies. The onset of incomplete conden-
sation results in a dramatic decrease in n, (R,T) at a
temperature determined in addition by the adsorption
energy (E,). Thus application of this model amounts to
the simplest two parameter (or three parameter at high
temperatures) fit to the experimental data N (R, T), mea-
sured by microscopy.
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FIG. 1. Schematic illustration of the processes occurring in
layer plus island, or Stranski-Krastanov growth. The indepen-
dent variables are the arrival rate (R) and substrate tempera-
ture (7). Also indicated are the activation energies for adsorp-
tion (E,) and diffusion (E,), and the binding energy E, of the
critical cluster, which contains / atoms. Here and in Fig. 2, the
dotted lines indicate the processes which are less important in
this growth mode.
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Ag/Si(111),> which have been studied by using UHV
scanning electron microscopy (SEM) techniques. Com-
ments are also made on rare-gas deposition systems,
which were studied recently® and earlier’ by low-
temperature transmission electron microscopy (TEM)
techniques.

The nucleation theory developed previously is de-
scribed in Sec. II: this is extended to ensure consistency
in the low supersaturation limit in Sec. III. Compar-
isons with experiment are made in Sec. IV: a discussion
follows in Sec. V.

II. NUCLEATION OF 2D CLUSTERS

A. Rate equations and processes

The first nucleation theory for 2D clusters was given
by Stowell and Hutchinson,® and a general equation for
the maximum cluster density was first given by Stowell.’
The nucleation theory needed can be derived within the
rate equation framework described previously,'” assum-
ing single adatoms to be the only species which are
effectively mobile on the surface. The equations for the
density n; of clusters of size j can be written as

dn,/dt=R —n,/7,—d(n,w,)/dt ,
dn;/dt=0(2<j<i),
dn, /dt=o0,Dn\n;,—2n,dZ /dt .

(2.1

(2.2)
(2.3)

Here Eq. (2.1) expresses the change in single adatom
population n; due to arrival from the vapor at rate R,
loss by evaporation with a stay time 7,, and by incor-
poration into existing clusters. Equation (2.2) expresses
the (approximate) local thermodynamic equilibrium
which exists between subcritical clusters of size j <i.
The critical size i corresponds to the clusters with the
lowest concentration, or highest free energy if equilibri-
um is assumed.

Equation (2.3) sums the supercritical (stable) clusters
as n, =2}.’°::. .11y, in terms of a nucleation rate
(c;Dnn;) and a coalescence rate proportional to the
rate of change of the substrate coverage by stable clus-
ters (Z).

The coupling of Egs. (2.1) and (2.3) arises because of
the interaction between nucleation and growth stages, as
illustrated in Fig. 2.2 The last term in (2.1) can be writ-
ten as

dnw,)/dt=n,/t,+n,/7.+RZ . (2.4)

The three terms represent incorporation of single atoms
into stable clusters by nucleation, diffusion capture, and
direct impingement, respectively. As shown earlier,"'?
most nucleation occurs under steady-state conditions,
with dn, /dt =0 in Eq. (2.1). Under these conditions it
is convenient to write (2.1) and (2.4) as

n=R7r(1-Z), (2.5)

with 7 '=7 "4+ 714771, where 7. =0,Dn,. This
expresses the competitive nature of reevaporation, which
is dominant at high temperatures, and capture by stable
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FIG. 2. Schematic illustration of the interaction between the
nucleation and growth stages. The single adatom population
(ny) determines the critical cluster population (n,); however, n,
is itself determined by the arrival rate R, and the characteristic
times for evaporation (r,), nucleation (r,), and diffusion cap-
ture (7.) by n, stable clusters. Only after these clusters cover a
sizable fraction of the substrate (Z) is direct impingement
significant.

clusters which dominates at low temperatures under
complete condensation conditions; the nucleation term is
always unimportant numerically, and will be ignored
subsequently. The capture number o, and the adatom
diffusion coefficient D enter via solution of the relevant
(2D) diffusion equation.'”

Two other relations are needed to couple (2.1) and
(2.3) analytically. There is first the relation between sub-
strate coverage Z and atoms in stable clusters
(nyw, =3, nw;). Specializing to 2D clusters, this
is simply

dZ /dt =N, 'd(n,w,)/dt , (2.6)

where N, is the density of atoms per unit area in the de-
posit. Clearly if the deposit is 1 ML thick, N, '=0Q2"3,
where (0 is the atomic volume, but Eq. (2.6) allows for
(constant thickness) multilayer nuclei.

The second relation needed is that between n; and n,
in (local) thermodynamic equilibrium. This is the Wal-
ton relation, often written in the form

(n;/No)=(n,/No)'3 C;(m)exp[BE;(m)] , 2.7
where N, =the substrate atomic density, B=(kT)" !, and
E;(m) and C;(m) are the energies and statistical weight-
ings of i-sized clusters of configuration m. In simplified
theories appropriate to relatively high supersaturation
(§ >> 1), Eq. (2.7) is limited to one configuration having
the highest binding energy, so that we write C; and E;
for a given I.

When these (2D) approximations have been made, Eq.
(2.3) can be written as a function of the coverage Z, i.e.,

dn,/dZ=J—2n, , (2.8)
where the “nucleation rate” term is
J=(o‘,-C,-Dn’i+]cxp(BE,- NN )/ o Dnyn, +RZ)

and n, is given by Eq. (2.5). The differential equation
(2.8) for n,(Z) therefore has solutions which depend on
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the dominant contribution to n,. However, Stowell” ini-
tially showed that the maximum cluster density, as-
sumed to occur at a coverage Z;, can be obtained simply
from Eq. (2.8) as n, =J /2. Rearranging this equation
and setting in the explicit expressions for J and n; leads
eventually to

(ne /NoNg +r)(Zo+r)=f(Zo,i (R /NED)
Xexp(BE; No DT,Ny) !,
(2.9)

where the ratio r=7,/7.=0,D7,n,. Equation (2.9) is
of the same form as given previously (Ref. 1, Eq. 2.17),
but the constants f, g, and Z; contained in Eq. (2.9)
have been retained explicitly. This means that the three
analytical regimes (denoted complete, initially incom-
plete, and extreme incomplete') can be obtained exactly,
depending on which terms are dominant on the left-hand
side of Eq. (2.9). For complete condensation r >>g, for
initially incomplete condensation Z, <r <g, and for ex-
treme incomplete condensation r << Z,.

Equation (2.9) has been used to calculate n, (R, T) in
general, given particular forms for D, 7,, and E;,. But
for layer and Stranski-Krastanov growth, the special
case of complete condensation, when reevaporation is
negligible, is particularly important. In this case, Eq.
(2.9) simplifies to

(ny /No)V T2=f(Zy,i (R /N3D Yexp(BE;) .

By taking the (i +2)th root of this equation we obtain an
equation of the same form as derived previously'*? for
(n, /Ng), with the correct constants. In order to repro-
duce this regime exactly we have f(Z,,i)=n(Z,,i) Q (i)
with Q(i)=(o;C;N, /Ny)"""*? and 3(Z,i) as comput-
ed previously (Ref. 1, Fig. 6¢c or Ref. 3, Fig. 5). The fac-
tor g is given by g'=0."'. In Eq. (2.9), however, its ex-
act value is unimportant as it is only used to interpolate
between the low- and high-temperature regimes, so we
have used ¢, =5. A short physical argument explaining
the form of Eq. (2.10) is given elsewhere.? It is also im-
portant to realize that (n, /N,) is very insensitive to the
choice of Z; since most nucleation occurs in the low-
temperature limit Z << Z,,.

(2.10)

B. Thermally activated processes and numerical solutions

The various processes: adsorption, adatom diffusion,
cluster formation, and bulk evaporation and/or conden-
sation are typically thermally activated processes with
Arrhenius temperature dependences, and energies E,,
E,, and E; indicated in Fig. 1. In particular, it is con-

ventional to write the adatom stay time 7, as
T ' =v exp(—BE,) 21

and the diffusion constant D as
D =avyNg'exp(—BE,) , (2.12)

where E,,v, and E,,v; are adsorption and diffusion en-
ergies and frequencies, respectively, and a=0.25 for

diffusion in two dimensions.

Evaluation of the right-hand side of Eq. (2.9) or (2.10)
requires a model for the critical cluster binding energy
E;. In fact only models in which all E; can be evaluated
can be solved. This is because these equations assume
that 7 is the critical size, and correspondingly that local
equilibrium is maintained [Eq. (2.7)] for all j <i. This
only happens for small j, and the actual critical size i is
that size for which n,(j), or equivalently the predicted
nucleation rate J(j), is a minimum.' Thus this paper is
limited to a very specific pair binding model in which
E;=b;E,, and b; is the number of nearest-neighbor
bonds, of strength E,, in a j-sized cluster. Furthermore,
the explicit calculations have to assume a particular
cluster geometry. Although any geometry is possible in
principle, and is of course actually determined by the
forces between the adatoms themselves and the sub-
strate, we assume here close-packed clusters on a hexag-
onal lattice. For these, the b; can be evaluated by sim-
ple counting, and some values are given in Appendix A.

With these values Eq. (2.10) can be solved directly.
Equation (2.9) is solved by iteration, using Eq. (2.10) as
the starting point. In this complete condensation limit,
the n (R, T) predictions depend sensitively on E; [via
Eq. (2.12)] and E,, and less on the frequency factor v,
and numerical constants. Such predictions have been
published previously for Ag/W(110).'" When reevapora-
tion is allowed [Eq. (2.9)], the behavior at high tempera-
tures is also influenced sensitively by E,. Some calcula-
tions for Ag/Si(111) and (100) using Eq. (2.11) inserted
into (2.9) have been published.” However, these high-
temperature predictions need to be revised as discussed
in the next section.

III. NUCLEATION AT LOW SUPERSATURATION

A. General considerations

It might seem an elementary requirement that a nu-
cleation model predicts zero nucleation rate at the equi-
librium sublimation pressure p, of the deposit: however,
this is not assured by the equations described as yet.
There are several reasons for this. First, the adsorption
energy E, is a free parameter, which can be used to
model adsorption on a substrate different from the de-
posit material. In this case, as discussed in general
terms elsewhere,! the effective supersaturation ratio
S=p/p. or R/R,, where the equilibrium pressure (p,),
or rate of evaporation (R, ), corresponds to a step in the
adsorption isotherm, which for layer-growth systems
occurs at p, <p,. For deposition of a material on itself
we must have E, and E; related to the sublimation ener-
gy L by

L=E,+ lim(E, /i) . (3.1)

For a special case of a lattice with nearest neighbor pair
bonds this reduces to L =E, +b _ E,, and for the hexag-
onal lattice b _ =3.

In this limit of large critical cluster size we can see
that the transition to incomplete condensation will take
place approximately when Eq. (2.10), for large i, corre-
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sponds also to r=o,D71,n,~1. By eliminating o,Dn,
we find this condition to be

15 '=v,exp(—BE,)=(1—Z)(R /Ny)exp(BE; /i) , (3.2)
or rearranging using Eq. (3.1):
(R/Ngvy)=(1—2Z) lexpl —BL) . (3.3)

Equation (3.3) qualitatively follows the sublimation line
with energy L, but quantitatively it almost certainly does
not. In particular, a finite nucleation rate can still occur
within the model at the experimental sublimation pres-
sure, given particular choices of parameters, and Eq.
(3.3) does not necessarily describe a line which occurs
within the actual crystal-growth regime.

To overcome these problems at low supersaturation,
generalizations to Egs. (2.7) and (2.11) have been made
which ensure consistency with the equilibrium sublima-
tion pressure, within an Einstein model of the solid.
This model has been used to fit the experimental sub-
limation pressure quite accurately for the cases of Ag
and various rare gases, as described in Appendix B.

Similar arguments could be advanced to change the
form of the diffusion constant D [Eq. (2.12)]. But be-
cause diffusion is only involved in the kinetics of crystal
growth, not the thermodynamics, this has not been done
here. In practice the form of the diffusion constant is
rather uncertain, and comparison with experiments may
have to average over the effects of anisotropic surface
crystallography, steps and other defects. Thus we prefer
to use E; in (2.12) as a parameter to characterize the
effective value of D which is appropriate to the experi-
ments. This is discussed further in Sec. V.

B. An Einstein model of adsorption,
cluster formation, and evaporation

The model considered can be visualized in terms of
the vibrations of the entities indicated in Fig. 2. Ad-
sorption of single adatoms is taken to be localized on N
sites. In these sites the adatoms vibrate with frequency
v, perpendicular, and v, parallel to the surface. The
corresponding *“Einstein” free energy can be expressed in
terms of x,=hv,/kT and x; using the function we
designate as &(x):

6(x)=0.5x +In[1 —exp(—x)] ,
as
E T)=E (0)—kT[6(x,)+26(xy)] , (3.4)

where E,(0) corresponds to the energy E, used previ-
ously in Eq. (2.11).

Adsorption in this model follows the Langmuir iso-
therm for low adatom concentrations n;, and the equi-
librium evaporation rate R, is given by'?

R,=p,/Q2aemkT)'?

=(27m /h3NkT)(n, /Nylexp[ —BE,(T)] . (3.5)

The same model can give the evaporation rate of the
bulk solid, with no vacancies, in the form
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R, =(2mm /h*)(kT)*exp[ —BL(T)] , (3.6)

where L(T)=E,(T)+b_E,(T) is the temperature-
dependent sublimation energy corresponding to Eq. (3.1).
For consistency, we need R, =n, /7,, so that

7. '=(2mm /h3No ) kT )exp[ —BE,(T)] (3.7)

is the expression to use instead of Eq. (2.11).

Within the nearest-neighbor model we assume that
atoms within clusters on the surface retain the same v,
as isolated adatoms, but have v,=%v, parallel to the sur-
face. This is consistent with Eq. (3.6) provided that

E,(T)=E,(0)—(2/b_)kT[E(x,)—6E(x,)], (3.8)

where E;,(0) is the E, used previously. Under these con-
ditions, the cluster free energy E;=b,E,(T) in the
simplified Walton expression for j =i:

(n; /Ng)=C;i(n,/Ny)exp[BE,(T)] . (3.9)

The above equations [(3.7)-(3.9)] are sufficient to en-
sure consistency within an Einstein model with the equi-
librium vapor pressure of a solid bound by nearest-
neighbor forces. Over a limited temperature range p, (or
R,) can be expressed as

Pe=poexpl —fBL,) . (3.10)

The values of the parameters L, and the average fre-
quency [(v,+2v,)/3] needed to agree with the vapor
pressure of bulk Ag and rare gases in the pressure range
below 1073 Torr are given in Appendix B.

IV. COMPARISON WITH EXPERIMENT

Recent experimental work at Sussex has involved nu-
cleation and growth studies of Ag on W(110), Mo(100),
and Si(100) and Si(111) substrates®~* by ultrahigh vacu-
um SEM. In addition, attempts have been made to grow
Xe crystals on (xenon-plated) amorphous carbon sub-
strates at low supersaturation® following earlier work at
low temperatures and pressures,’ using TEM techniques.
The fit of these experiments to the equations of Secs. II
and III are discussed here. The calculations were done
and the figures produced on a laboratory based PDP11-
23 system.’?

A. Silver deposits on metals and semiconductors

Figure 3 shows a comparison of the Ag/W(110) N(T)
data’ with the calculated n,(T) based on the complete
condensation equation (2.10). Two curves which fit the
data tolerably well are shown, corresponding to different
values of E, around 0.3 eV and E, around 0.1 eV. The
larger value of E; (0.15 eV) gives the steeper slope on
the Arrhenius plot and vice versa, and corresponds to
the smaller values of E, (0.275 eV). Changes of E; by
around +0.05 eV coupled with changes in E, by 0.025
eV are thus consistent with the data, but much larger
changes would be inconsistent. In particular E; >0, so
that we can bracket 0 < E; <0.20 eV, and consequently
0.35> E, >0.25 eV.

Figure 4 shows a similar calculation compared with



