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Nucleation and growth models are well developed for nucleation on homogeneous 
substrates, and they can typically be described in terms of three energy parame- 
ters. Nucleation on substrates containing point-defect traps has been investigated, 
at the cost of introducing more energy parameters. This paper outlines the quanti- 
tative description of such growth models, using rate and rate-diffusion equations, in 
terms of energies for individual surface processes, with examples taken from metal- 
metal, metal-insulator and semiconductor growth. The challenge to modelling is to 
describe the large range of length and time-scales in thin-film fabrication and degra- 
dation, without relying on too many (unknown) material parameters, which often 
occur in combination. Separating them into elementary processes often proves to be 
a challenge. One typically requires selective nucleation using patterned substrates, 
in combination with controlled, self-organized, growth for reliable nanotechnology. 
Reconstructed semiconductor surfaces offer both a further challenge to modelling 
and an opportunity for future technology; these paradoxes are discussed briefly. 

Keywords: nucleation and growth; rate equations; rate-diffusion equations; 
metal growth; patterned substrates; semiconductor growth 

1. Introduction 

Nucleation and growth on surfaces has been studied intensively over the last 30 years. 
In the specific case of deposition from the vapour, it is well known that individual 
atomic events can strongly influence and even dominate the final micro- or nanostruc- 
ture of epitaxial thin films (Venables 1994, 2000). Scanning-tunnelling-microscopy 
(STM) (Brune 1998; Bennett & von Kiinel 1999) and field-ion-microscopy (FIM) 
One contribution of 13 to a Discussion Meeting 'Quantum dots: science on the smallest scale?'. 
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312 J. A. Venables and others 

(Ehrlich 1991, 1994; Kellogg 1994; Tsong 1990) experiments are able to follow such 
individual events. Such experiments, which exploit the surface sensitivity and ultra- 
high resolution of the STM and FIM, have mostly been carried out on clean, low- 
index metal surfaces at low temperatures, and they have emphasized the extreme 
kinetic limit, where the main process is surface diffusion by individual adatoms and 
pairs of adatoms are already stable clusters. Analysis of such experiments has led 
to accurate values of the adatom diffusion coefficient D1 and diffusion energy (Ed 
and Em are used in the literature), which have been tabulated in several cases in the 
above references. 

On the other hand, experiments at higher temperature have required more param- 
eters for their interpretation, but the order of events depends on the system studied. 
For metals deposited onto insulators such as alkali halides, the adatom adsorption 
energy Ea is typically the first additional parameter needed, as the metal adatom 
is rather weakly bonded to the substrate. In this case re-evaporation can take place 
at moderate temperatures, and the mean free path for adatoms is determined by 
(Ea - Ed). For other systems, such as metal or semiconductor growth, (Ea - Ed) 
is relatively high, so that the first process to intervene may be the break-up of 
small clusters, which can be parametrized by a lateral binding energy Eb between 
adatoms. Experiments on all these systems have been carried out by the full range 
of surface analytical and microscopical techniques, including, where practical, in 
situ observations of the nucleation and growth dynamics at the growth tempera- 
ture. However, many growth methods, for example the widely used chemical vapour 
deposition (CVD), are much too complex for this approach to work; we have to rely 
almost entirely on ex situ observations, taken after growth at elevated temperature 
and subsequent cooling, typically to room temperature. 

There are three main types of model that are used to connect these experiments 
to atomic-level parameters. The first, rate equations (REs) and rate-diffusion equa- 
tions, has a long history in chemical kinetics; this largely deterministic approach is 
emphasized here. The second, kinetic Monte Carlo (KMC) simulation, incorporates 
statistical fluctuations, and is widely used. The advantage of direct simulation is 
that all processes thought to be important can be included, but the corresponding 
disadvantages are that the rates of all such processes must be explicitly included, 
and the computational effort scales with the rate constant of the fastest process, 
typically adatom diffusion. The problem is even more acute for molecular dynamics 
(MD) simulations, where individual atomic motions are followed in real time. The 
level set (LS) method (Petersen et al. 2001; Ratsch et al. 2002) has been developed 
more recently. In particular, the LS method combines an atomic-level description in 
the direction perpendicular to the substrate, with a deterministic continuum descrip- 
tion in the substrate plane; it is therefore highly appropriate for investigating layer 
growth. 

Any of these methods can be used to determine atomic-level parameters, or a com- 
bination of parameters, which are needed to describe particular experimental results. 
Comparison of such parameters with ab initio quantum theory is then a reasonable 
goal, which has been successfully achieved in a few cases. Once this circle has been 
closed we can be satisfied and move onto other problems. However, it remains a 
major challenge to do this in general. Crystal growth on substrates is an archetypal 
problem for multi-scale modelling, involving a large range of length- and time-scales. 
An individual method can only examine a very restricted subset of all such scales. In 
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Figure 1. Schematic of the interaction between nucleation and growth stages. The adatom density 
ni determines the critical cluster density ni; however, ni is itself determined by the arrival flux or 
rate (F or R) in conjunction with the various loss processes, which have associated characteristic 
times (Ta, Tn and Tc) as described in the text. (After Venables (1987, 2000).) 

particular, the growth of quantum dots (QDs) on (reconstructed, compound) semi- 
conductor surfaces involves a whole series of reactions and potentially rate-limiting 
steps, which has presented a serious challenge to thorough analysis. We return to this 
topic in ? 5. But first, in ? 2, the progress that has been made in describing nucleation 
and growth using REs is described. Then, in ? 3, nucleation on point-defect sites is 
outlined; such defects can form the basis of a nanofabrication technique involving 
self-assembly. Section 4 deals with rate-diffusion equations in one and two dimen- 
sions, illustrated with recent experimental examples. 

2. Rate equations and algebraic solutions 

Rate equations are a natural starting point in the modelling of atomic, molecular and 
electronic processes. In the case of the processes discussed in ? 1 for cluster growth 
on surfaces, adatoms or admolecules are typically the mobile species, and we need 
to write down the REs for these species and for their incorporation into clusters of 
all sizes and configurations. Needless to say, key simplifications are required to make 
progress. 

A useful, but rather drastic, approximation is to divide the infinite set of REs 
into three sharp categories. The first category is the single adatom areal density, for 
which the RE can be written as dni =F(1 - Z)_ 7 = 7T'+1 + re I + - -. 1+(2.1) dn F(1- Z) 

l - 
1 

dt T 

Here F is the deposition flux (or equivalently the rate R) and Z is the coverage 
of the substrate by stable clusters. The composite term n /l7 represents all the loss 
terms, adsorption, nucleation, capture by stable clusters and maybe others (hence the 
dots), which add like resistances in parallel. In the second category, we consider the 
statistical mechanics of small clusters of size j, via the Walton relation (see Venables 
1987, 1994, 2000). We can then show that the corresponding rate equations for nj 
are all effectively zero, and that nj is proportional to n'; these equations represent 
subcritical clusters, 2 < j < i, where i is the critical cluster size. If i = 1, there are no 
such clusters or equations, at high supersaturation. Finally, all larger clusters (j > i) 
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314 J. A. Venables and others 

are deemed to be stable, and are grouped together as a density nx in one further 
equation 

dnx 
= Ui - c, (2.2) dt 

where the nucleation rate Ui = aiDlnlni, where ai is the relevant capture num- 
ber, discussed further in ?4. The coalescence rate, Uc, has been expressed as 
Uc = 

2nx 
dZ/dt, although other forms become relevant at high coverage (Brune 

et al. 1999). The competitive nature of the processes discussed above is illustrated 
schematically in figure 1 (Venables 1987). 

The above simplifications mean that we have reduced our formulation to two 
coupled, nonlinear, ordinary differential equations (ODEs) for nl and n,. We now 
have two tasks. Our first task is to input a sensible set of processes. Capture by 
stable clusters is important in limiting nucleation, giving rise to the term T-1 in 
equation (2.1); we can write this as 

%r-1 
= 

uDln,. 
It is clear from this expression, 

and the schematic of it in figure 1, how the nonlinearities arise; n. depends on 
the (j + 1)th power of nl via equation (2.2), but n, is also involved in limiting 
nl in equation (2.1). Depending on the processes that dominate, different regimes 
are expected, and if further processes are included (cluster mobility or mobility- 
induced coalescence for example), they may lead to different power laws and different 
temperature dependencies. These points have long been appreciated in the literature 
(e.g. Venables 1973), and later examples may also be found via references quoted 
here. 

The second task is to adopt a particular method of solution. We can simply inte- 
grate the differential equations, casting them in matrix form if appropriate; clearly 
we are not limited to two equations as above, but using more risks becoming unduly 
dependent on unknown parameters, which may or may not be included in a consis- 
tent fashion. These ODEs are stiff, and instabilities can easily result from using time 
or coverage steps that are too large. Some examples of direct integration are given 
in 4. 

A second method of solution is to make a steady-state approximation, in which 
all net rates of change are zero. For example, after an initial transient time, which is 
shorter than any of the individual times making up the overall 7 in equation (2.1), 
dnl/dt is effectively zero. Similarly, if we limit our attention to the maximum in 
n,, dnx/dt is also zero. Thus, in this case, the ODEs reduce to nonlinear coupled 
algebraic equations, for which we can obtain explicit or iterative solutions. 

These algebraic solutions allow one to extract all the relevant material parame- 
ter dependencies within any one condensation regime, and they are not limited to 
particular values of the critical nucleus size, i, as has been assumed by particular 
authors on particular occasions. The value of i is that value of an assumed j which 
yields the minimum nucleation rate or density. During direct integration, this i-value 
can vary, thus including phenomena such as Ostwald ripening during deposition or 
annealing. In an algebraic solution, it is the value that produces the minimum den- 
sity n, and so corresponds to the effective value for the deposition as a whole under 
the given conditions. The important point is that the critical nucleus size is an out- 
put of the calculation that has characteristic energies as input, not the other way 
around. 

Modern computational packages can make these points conceptually clear. As illus- 
trated in figure 2, MATLABTM 5.3 (Student edition) has been used to model the rela- 
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Figure 2. Algebraic solution to REs for Ea = 2.55, Eb = 0.7 eV and Ed = 0.8-1.2 eV. (a) Tem- 
perature dependence for F = 0.06 ML min-; (b) flux dependence for T = 450 'C. Pair-binding 
model for E- up to j = 3, but with E3= 2.2Eb, rather than 2Eb, which allows a range for i = 2 
that would otherwise be absent (this range is longer the higher E3 is above 2Eb). Extension to 
higher i-values might require higher values of Ea for comparable agreement at high-temperature 
in (a). Experimental nucleation densities for Ti/Si(001) are taken from McDaniels et al. (2001) 
and show agreement with Eb 1.1 ? 0.1 eV. See text for discussion. 

tively complex surface reaction of Ti deposited onto Si(001) during the initial stages 
of titanium silicide (TiSi2) formation. This system has been investigated experimen- 
tally by several techniques, and Arrhenius (T-1) and power-law F-dependencies are 
those expected for simple nucleation and growth models (McDaniels et al. 2001), 
with a small value of i in the range 2-6. The algebraic solution is formulated as a 
matrix in [T-1, j], which is simultaneously addressed, to arrive at an iterative solu- 
tion dependent on the three energies Ed, Eb (which is built up into Ej via pair-bond 
arguments) and Ea (which intervenes only at the highest T-values). In this case, we 
can obtain a perfect fit to a relatively small dataset, with the energy values given 
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Figure 3. (a) Model for nucleation at attractive random point defects (density nt), which can 
be occupied by adatoms (density nit), clusters (density nt) or can be empty. (b) Algebraic 
solution to rate equations for trapping energy Et = 0.5 eV, Ea = 1.16 eV, Eb = 1.04 eV and 
Ed = 0.1-0.6 eV. Originally used for experiments on Fe/CaF2(111) (Heim et al. 1996) and 
recalculated for Venables (2000). See text for discussion. 

in the figure, and the whole exercise takes less than a minute on a 300 MHz laptop 
computer. Algebraic solutions are very quick, faster than integrating ODEs, and 
much faster than KMC or LS methods. Thus, they have an educative value, and 
can provide an overall summary of the behaviour, provided that one accepts the 
conditions that lead to the formulation in the first place. 

Does this mean that we believe the fine details of this model, as applied to the 
complex, reactive system Ti + 2Si - TiSi2? No, we do not: what figure 2 shows is 
that the RE pair-binding formulation is sufficiently flexible to provide an adequate 
three-parameter fit to a limited dataset and that, in the situations illustrated, the 
supply of Si is not rate limiting. It is thought that Ti may diffuse as subsurface 
interstitials, creating mobile Si ad-dimers and immobile dimer vacancies. The late 
transition metals (Co, Ni, Pd, etc.) dissolve into the bulk rather than re-evaporate 
(McDaniels et al. 2001), so Ea may not represent re-evaporation in this case. So 
the energy parameters, obtained by comparison of the model with experiment, are 
often lumped, and may be open to interpretation. Moreover, one needs several sets of 
independent experimental data to test the model in detail, and these may not be easy 
to obtain. These points apply with even greater force when we consider extending 
the models beyond three energy parameters. 

3. Extensions to defect nucleation 

In many cases, particularly of metals deposited onto insulators, it has long been 
known that surface point defects and line defects such as surface steps act as preferred 
nucleation sites (see Venables 1994, 2000 for references). More recently, this aspect 
has become of interest for nanofabrication, since well-defined and positioned traps 
are possible routes to the self-assembly of nanostructures. Only point-defect traps, 
which necessarily introduce two extra parameters, a trapping energy, Et, and a trap 
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Figure 4. Arrhenius representation of Pd island density Nx (cm-2) at 0.1 ML coverage on 
Ar-cleaved Mg(001). (a) Solid line, model for Ed = 0.2 eV, Et = 1.5 eV, Eb = 1.2 eV and 
Ea = 1.2 eV, plus curves for Ed = 0.3 eV (dashed line) and 0.4 eV (dotted line), and experi- 
mental data (squares) from Haas et al. (2000). The insert shows the model for i = 3 applicable 
at high temperatures, using the same notation as figure 3a. (b) Sensitivity to the parameter 
Eb = 1.0 eV (dashed line) and Eb =1.2 (full line), with Ea = 1.2 eV important at high temper- 
ature, where the experimental data (triangles) indicate condensation to be incomplete. (After 
Venables & Harding (2000).) See text for discussion. 

density, nt, are considered here. In the RE formulation, we also need to double-up the 
number of coupled equations, for the densities on traps, and on the terraces between 
the traps. This is illustrated schematically in figure 3a. 
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Again we can make progress by focusing on the fate of the adatoms, in this case 
the trapped adatoms, with density nit, whose fate is governed by an RE of the form 

dnit (Et + Ed)) 
dt= UltDininlte 

- 
nltld 

exp - 
kT,+ ' (3.1) dt kT 

where the number of empty traps nte nt - nit - 
nxt. 

In steady state, this equation 
is zero, and inserting the usual form for D1 1 1d exp(-Ed/kT), we deduce that 

nit 
_ 

A A nCt exp (3.2) 
-t - nt 1 + A' kT 

where Ct is an entropic constant, which has been set equal to unity in the illus- 
trative calculations performed to date. Equation (3.2) shows that the traps are full 
(nit nt - nxt) in the strong trapping limit, whereas they depend exponentially 
on Et/kT in the weak-trapping limit, as expected. This equation is a Langmuir- 
type isotherm for the occupation of traps; the trapping time 7t, in analogy to equa- 
tion (2.1), which is required to reach this steady state is very short, unless Et is very 
large; but if Et is large, then all the traps are full anyway. 

The total nucleation rate is the sum of the nucleation rate on the terraces and 
at the defects. The nucleation-rate equation without coalescence, analogous to equa- 
tion (2.2), is 

dnx 
d = aiDlnlni + itDinlnit, (3.3) dt 

where the second term is the nucleation rate on defects and nit is the density of 
critical clusters attached to defects, ait being the corresponding capture number. In 
the simplest case, where the traps only act on the first atom which joins them, and 
entropic effects are ignored, we have 

nit - (nt - nxt)A 
nl ni(1 + A) 

Typically, there are three regions: a high-T region, where adatoms visit the traps 
but can become detached from them; a low-T region, where the traps are full, but 
the nucleation density is largely unaffected, since nx > nt; and, in between, there is 
a plateau region, where n, = nt. The plateau is longer if Et is higher and Ed lower. 
The first requirement is obvious, and the latter is required so that adatoms reach 
the traps before finding each other. The plateau region is interesting for fabrication, 
since the resulting nanostructures are independent of processing conditions. A model 
calculation, originally intended for Fe/CaF2 (Heim et al. 1996) is shown in figure 3b. 

This defect nucleation model contains several subcases, depending on values of 
the parameters. An interesting example is Pd/MgO(001), studied with atomic-force 
microscopy by Haas et al. (2000), where a single set of experiments has been analysed 
to put bounds on four energies; these data require a high trapping energy Et and a 
low value of Ed, while also being sensitive to Eb and EPa, as illustrated in figure 4. In 
this case, the high-temperature portion of the data corresponds to the transition to 
i = 3, so that individual adatoms remain attached to traps, but subsequent adatoms 
can become detached. These features are in agreement with calculations by Ferrari 
& Pacchioni (1996) and Venables & Harding (2000) for trapping of Pd in oxygen- 
ion vacancies. The role of surface charges in stabilizing both surface vacancies on 
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insulator surfaces and small clusters attached to such point defects is very marked. 
Currently, different calculations agree that such effects are strong, but disagree on 
their exact magnitude; more comparative work is needed in this area. 

Nucleation on defects has also been investigated using KMC simulations. An exam- 
ple is the work of Lee & Barabisi (1998), who showed that an ordered array of defect 
trapping centres can lead to a markedly narrower size distribution than expected for 
randomly nucleated islands, but only when the mean diffusion length is comparable 
with, not much greater than, the distance between the defect traps. This corresponds 
to the upper end of the plateau regime, shown here in figure 3b, where the adatom 
catchment area is roughly the same as the regular Voronoi polyhedron around each 
defect site. The goal of a uniform size distribution is clearly desirable for applications; 
it may also be aided by stress and diffusion fields as discussed in ?? 4 and 5. 

4. One- and two-dimensional rate-diffusion problems 

The previous models have assumed spatial uniformity, and diffusion effects have been 
included implicitly via the effect on capture numbers. There are several problems 
where spatial correlations (adatom-adatom or adatom-cluster) have to be considered 
explicitly. For that we need to solve one or more diffusion equations in the relevant 
one-dimensional (ID) or two-dimensional (2D) geometry, in parallel with REs. 

The most obvious problem concerns the value of the capture numbers themselves. 
Originally it was assumed that expressions for al, ai and a, (or Uk in general) could 
be written down by inspection, as simply the number of sites around the periphery 
of the cluster, 27(rk + 1) (Zinsmeister 1966), where the radius of the cluster in units 
of the jump distance is rk. But a large effort by several authors showed that diffusion 
solutions, obtained by considering radial diffusion towards a typical k-cluster, were 
more realistic and had Bessel function forms with an approximately logarithmic 
dependence on rk (Venables 1973). As such, it was often assumed subsequently that 
capture numbers can be approximated by constant values, especially for determining 
the dependence of densities such as nr and nl on material parameters. But modern 
program suites such as MATLABTM or MATHEMATICATM contain library routines 
for Bessel functions, so it is easy to write in the correct diffusion forms. A more 
recent evaluation (Brune et al. 1999) has shown the extent of the differences between 
these forms, especially for the case of complete condensation and i 1, which is 
appropriate for STM experiments conducted at low temperatures. 

Two sets of STM experiments have been conducted on the deposition and anneal- 
ing of Cu adatoms at low temperatures (Repp et al. 2000; Knorr et al. 2002). After 
deposition and subsequent diffusion, the spatial distribution is not random, and 
this feature has been analysed quantitatively to determine the oscillatory interac- 
tion between Cu adatoms at a function of radial separation. In the second of these 
experiments, Cu was deposited onto a Cu(111) substrate at 16.5 K, to submonolayer 
doses (ca. 3 x 10- ML), followed by annealing at various temperatures ca. 20 K for 
times up to 20 min. At short distances, there is repulsion between adatoms, and 
this repulsion forms a barrier to ad-dimer formation; but once formed, dimers are 
completely stable and do not diffuse. This system is therefore a fascinating case: the 
ultimate QD, a stable cluster of two atoms on a relatively smooth surface, formed 
by self-assembly. No QD will ever be smaller than this! 
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Figure 5. Predicted nl and n, annealing curves as a function of (Dit)05, for annealing at 
16.5 K with attachment barriers EB = 0, 5 and 10 meV, compared with KMC simulations: 
squares with error bars, KMC; solid lines, RE integration. The capture numbers used are based 
on an interpolation scheme between attachment barrier and diffusion solutions, showing essential 
agreement with the KMC simulations. See text for discussion of how these curves apply to STM 
experiments on Cu/Cu(111). (Abstracted from Venables & Brune (2002).) 

However, these experiments also test capture number models, as a repulsive barrier 
of height EB changes the form of the diffusion field around adatoms and clusters, and 
reduces the capture number markedly if EB/kT > 0.2. As shown recently (Venables 
& Brune 2002), the full time-dependent form of the capture numbers is required to 
obtain agreement between RE solutions and KMC simulations in the earliest stages 
of low coverage (sub-ML) annealing. The diffusion solution is almost sufficient when 
the barrier is zero, but for finite barriers the diffusion solution is quite wrong, and the 
attachment-limited (barrier) solution, 0k = 27r(rk + 1) exp(-EB/kT) is much closer. 
Surprisingly, this is true even for barriers much smaller than the diffusion energy. 
Note also that this capture solution is similar to the form used by Zinsmeister (1966), 
but is now reduced exponentially by the Boltzmann factor for the barrier. It corre- 
sponds to the case where there are no adatom-adatom or adatom-cluster spatial 
correlations prior to attachment. 

The full solution for annealing, appropriate to Cu/Cu(111), is shown in figure 5. 
As a result of the agreement between the KMC and RE solutions, we can extrapolate 
to other conditions with confidence, and we can compare these with the experimental 
results of Repp et al. (2000) and Knorr et al. (2002). These results showed no dimer 
formation during 20 min at ca. 17 K and the completion of dimer formation after 
20 min at 22 K. As a result, we were able to deduce that the barrier height EB, or 
alternatively the repulsive energy maximum Vo, for Cu/Cu(111), lies between 10 and 
14 meV, as illustrated in figure 6. This figure is based on an integration of the REs 
for each Vo, up to the end of annealing (2 or 20 min) using the known Ed value, 
which is 40? 1 meV for Cu/Cu(111) (Knorr et al. 2002). The comparison with KMC 
simulations is again excellent, but the RE computation is much faster, less than 
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Figure 6. Predicted annealing curves as a function of barrier height Vo, at temperatures 
17 < Ta < 23 K. The ratio (nl + n,) after a 2 min anneal to the initial value ntot = (ni + n,) 
after deposition, is plotted (full lines). These curves use the time-dependent capture-number 
expression as in figure 5. The curves for 19 and 21 K are also compared with the KMC simula- 
tions (squares and circles with error bars). Additionally, a curve for annealing at 22 K for 20 min 
is given (dashed line). See text for discussion of how these curves apply to STM experiments on 
Cu/Cu(111). (Abstracted from Venables & Brune (2002).) 

10 min for each curve, as opposed to many weeks for the KMC data. This again 
points to a role for RE solutions in summarizing large amounts of computation done 
by other methods. 

There are many other problems where ID and 2D diffusion solutions are needed to 
complement RE treatments. These include capture by steps, the growth of quantum 
wires, deposition past a mask and growth on anisotropic reconstructed surfaces. 
We do not discuss the first two topics; the last two are discussed next in relation 
to growth on (001) and (111) reconstructed-semiconductor surfaces. We consider 
two examples: QDs formed from Ge/Si(001), and mask deposition of Ag/Si and 
Ag/Ge(111) as prototypical metal-semiconductor deposition and annealing systems. 

5. Are semiconductors special? 

Are semiconductors special? There are many possible reasons why they might be, 
although in some cases this may turn on differences of degree, not of kind. Due to 
intense interest in device applications, each individual system has been intensively 
studied. Different systems that appear to be similar are often treated by specialists 
as being quite different. This can be traced to the interest in electronic and optical 
properties, with crystal-growth mechanisms only appearing as a potential obstacle 
to growing films with the desired properties. The most obvious distinctions made 
are between (i) indirect or direct band-gap materials (group IV versus III-V and 
II-VI); (ii) the positions of the conduction band minimum (e.g. Ge versus Si); and 
(iii) the magnitudes of the conduction and valence band offsets in heterostructures. 
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The role of strain, and alloying or clustering, on level shifts and splitting is also very 
important in relation to optical properties. 

From a crystal-growth viewpoint, the first complexity is the surface reconstruc- 
tion. The (2 x 1) and related superstructures on Si and Ge(001) arise from the strong 
dimer bonds which form to reduce the number of dangling bonds. As a result, most 
of the sublimation energy per atom, L, is gained on condensation by the forma- 
tion of dimers (i.e. 2Ea + Eb2 per dimer in the notation of this paper), and very 
little extra energy remains to be gained when these dimers are incorporated into 
the growing crystal. This is consistent with the observation of a substantial density 
of ad-dimers at elevated temperature, with a low formation energy, Ef2, measured 
in quenching experiments as Ef2= (2L - 2Ea - Eb2) = 0.35 + 0.05 eV by Tromp & 
Mankos (1998). 

The second complexity involves diffusion, where there are several competing mech- 
anisms. Condensing adatoms compete to form dimers and/or join clusters, and dif- 
fusion itself is strongly anisotropic on the (2 x 1) surface, as is attachment to the 
different types of steps on this surface. Some of these mechanisms have been inves- 
tigated quantitatively, most notably by atom-tracking STM (Swartzentruber 1996; 
see, for example, Venables 2000, ch. 7). Adatom diffusion energies, Ed, parallel to the 
rows have been measured both for Si (0.67 ? 0.08 eV) and Ge (0.62 eV), and they 
have also been estimated perpendicular to the rows, at ca. 1.0 eV and 0.95 + 0.1 eV, 
respectively. Dimer diffusion energies, Ed2, have been measured on Si(001), and are 
ca. 1.1 eV parallel to the rows, with higher values reported (calculated or measured) 
both perpendicular to the rows and in the troughs between them (Borovsky et al. 
1997a, b, 1999). Thus, these surfaces present a highly complex energy landscape for 
diffusion, with different mechanisms active at various temperatures. 

However, it is clear with the above energies that critical nuclei at practical growth 
temperatures may well be large, since the lateral binding (between strongly bound 
dimers) is so small. This feature has encouraged a 'classical' treatment of nucleation 
and growth in terms of edge energies for 2D nuclei; critical nucleus sizes up to i = 650 
have been deduced in some circumstances (Thies & Tromp 1996). This approach 
has been reviewed recently by Tromp & Hannon (2002). These same energies show 
that, although the Si- and Ge(001)-growth systems may be close to 2D equilibrium, 
they are very far from equilibrium with their (3D) vapour, and re-evaporation is 
known to be negligible at normal growth temperatures, 450-650 ?C. Using the known 
sublimation energy of Si, L = 4.63 ? 0.04 eV, we can deduce from the Tromp group 
results that (2Ea + Eb2) = 8.91 ? 0.07 eV. The dimer binding energy, Eb2, has been 
estimated theoretically as Eb2 = 2.0 eV (Ramstad et al. 1995), so that the adsorption 
energy of a Si adatom, Ea, must have a value close to 3.5 eV. 

Most interest in Si, Ge and SiGel_, alloys has focused on the growth of clusters 
above a wetting layer, which is of the order of 3 ML thick for pure Ge grown on 
Si(001) (Krishnamurthy et al. 1991). The growth of such clusters has been intensively 
studied. Clusters take the form of rectangular huts, followed by domes of various 
shapes, all of which are coherent with the wetting layer; when the clusters are large 
enough, misfit dislocations are introduced and the clusters become incoherent. For 
application as QDs, such clusters need to be rather small, well within the coherent 
size limit. It has been found that the deposition temperature and flux play key roles, 
not only in determining nucleation densities but also in determining the extent of 
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Figure 7. Size distributions of Ge/Si(001) islands grown at (a) 600 'C and (b) 450 'C to the 
coverages indicated. For each temperature, the left-hand peak corresponds to huts, while the 
right-hand peak corresponds to domes. At 600 'C and 650 ?C (not shown), large alloyed hut 
peaks exist between the two outer peaks; these large hut peaks are not present at 550 'C 
(not shown) and 450 0C. Note also that the dome peak shifts to larger sizes at higher growth 
temperatures. The existence of large, alloyed huts and the shift of the dome peak to larger sizes 
is indicative of Si interdiffusion. Formation of a lower misfit alloy allows clusters to attain larger 
sizes prior to shape transitions of dislocation introduction. (After Chaparro et al. (2000a).) 

surface diffusion and interdiffusion leading to alloying in the surface and subsurface 
regions. 

Recently, very specific effects of the role of stress on diffusion and interdiffusion 
have been demonstrated in these systems. First, island formation is a response to the 
4.2% mismatch between the Ge and Si lattice constants (less in the SixGel_x alloy 
system). Second, there is a large compressive stress, or equivalently elastic energy, at 
the edge of Ge-rich islands on the wetting layer. This region therefore has a higher 
chemical potential for diffusing Ge adatoms or dimers, which is higher for larger 
islands. At a high enough growth temperature, this extra potential results in trench 
formation around domes, in which not only Ge but also Si diffuses away from the 
high-stress region (Chaparro et al. 2000a). 
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Figure 8. Summary of shape evolution of Ge clusters grown at F = 1.4 ML min-1 onto Si(001) at 
600 'C. The vertical position of the horizontal bars represents the contact angle of the dominant 
facet with the (001) substrate. The horizontal extent of the bar represents the size range over 
which that morphology exists. The top half of the figure shows the evolution of the (110) 
cross-section and the bottom half the (100) cross-section. (After Chaparro et al. (2000a).) 

Stress relief via interdiffusion also accounts for certain features of the hut-dome 
transition and the dome size distributions shown in figure 7. At 450 0C the peak at 
40 nm diameter corresponds to coherent domes, and the peak at smaller sizes to huts, 
but interdiffusion is not an important factor. At 600 OC, the dome peak has shifted 
out to 80 nm diameter, while a new broad peak has appeared centred at 40 nm, which 
corresponds to partly alloyed huts. This hut-dome transition can thus be delayed to 
some extent via alloying at the higher growth temperatures. The sequence of shapes, 
the formation of trenches, and the introduction of dislocations have been documented 
in detail (Chaparro et al. 2000a) at a series of growth temperatures; the sequence at 
600 'C is shown in figure 8. 

We are presently quite a long way from a fully quantitative model of all com- 
peting effects in this and similar systems: nucleation, growth (initial and stress lim- 
ited), ripening or coarsening, shape fluctuations and transitions, stress-influenced 
interdiffusion, and so on. But many pieces of the argument are in place. The high 
ad-dimer concentration and the small dimer-dimer interaction relates to the high 
critical nucleus size (small supersaturation) for nucleation and initial growth (Tromp 
& Hannon 2002). The high density of mobile species makes both Ostwald ripening 
and shape fluctuations relatively easy, as seen directly by in situ low-energy electron 
microscopy (Ross et al. 1998). Interdiffusion is strongly influenced by high stress con- 
centrations at the edge of the clusters, and this effect leads to the trenches, with an 
effective diffusion coefficient that is considerably faster than bulk diffusion (Chaparro 
et al. 2000b; Denker et al. 2001). 

Similar considerations apply to growth on Si(111), but here the reconstruction is 
the famous (7 x 7) structure, whose symmetry is triangular with a repeat distance of 
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2.688 nm. Adatoms form the mobile species, and the surface is rougher than (001), 
in the sense that there is a deep hole at the corners of the (7 x 7) cell and troughs 
along the dimerised edges, which separate the faulted and unfaulted halves of the 
cell. Thus, diffusion on this surface represents a serious obstacle course; moreover, 
growth of a second material, whether of a semiconductor such as Ge or metal such as 
Ag, reconstructs the surface differently. In the latter case the Vi (i.e. 3' x V3R300) 
structure with ca. 1 ML coverage is especially stable, and growth and annealing at 
temperatures above 200 'C take place on that surface, which is in effect an interface 
compound. Direct integration of the REs for Ag adatoms on both Si and Ge(111) 
has been used to obtain accurate values of adsorption, diffusion and binding energies 
on these surfaces (Venables et al. 1997), but again there are details left to sort out, 
notably those concerned with small particle mobility and interdiffusion. 

At lower temperatures there are kinetic limitations to the formation of the 3 
structure, and this offers the possibility of manipulating the kinetics to obtain various 
types of QDs on the scale of the (7 x 7) structure. For example, several metal deposits 
on Si(111) have been investigated by Wang & Lai (2001) and other authors; silicide 
nucleation and growth have been shown to be different on the faulted and unfaulted 
halves of the 7 x 7 unit cell (Bennett et al. 1994; Bennett & von Kinel 1999). It 
remains to be seen whether such structures can be developed further or analysed 
effectively using the methods described here. 

6. Discussion and conclusions 

A brief survey has been given of the use of rate and rate-diffusion equations to analyse 
experiments on nucleation densities during deposition and annealing. Extension of 
the simplest model to include nucleation on point defects is described, and computing 
accurate capture numbers has been revisited in comparison with KMC simulations. 
Experimental examples include metal-insulator, metal-metal, metal-semiconductor 
and elemental semiconductor-growth systems, including those described as QDs. The 
growth of III-V and II-VI compound semiconductors has not been described, but 
these involve all the complexities discussed here, plus others of their own. In particu- 
lar, the stages of surface reaction, partial interdiffusion leading to composition vari- 
ation within the dot, are important in obtaining agreement with optical properties 
in III-V compounds (e.g. Shumway et al. 2002). An excellent example of multi-layer 
stacked QDs is in II-VI compounds (e.g. Raab et al. 2002), where impressive size 
and spatial uniformity has been demonstrated. These are good indicators of where 
the field is going, but are beyond the scope of this paper. 

One interesting item for future work is a comparison of these semiconductor and 
metal-semiconductor systems with the metal-metal systems discussed in ? 5. From 
the point of view of a large-scale description via REs, they are quite similar. The 
role of the stress is to change the energy landscape near the edge of the clusters, and 
so to reduce the capture number for larger clusters. If the energies in the problem 
scale with the temperatures used in growth and annealing, and 600 ?C (873 K) for 
Ge/Si(001) is divided by a factor of 40, then we find we are at 21.8 K, in the range 
of temperatures explored during annealing of Cu/Cu(111) in figure 5. The value of 
Ed for Cu/Cu(111) is 40 meV, and 40 x (40 meV) = 1.6 eV, somewhat higher, but of 
the same order of magnitude as that expected for Ge surface diffusion, and probably 
quite similar for diffusion within the first layer or two. 
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The potential barrier for adatom attachment interpreted in ? 4 as 12 ? 2 meV for 
Cu/Cu(111) (Venables & Brune 2002) translates into 0.48 ? 0.08 eV on multiplying 
by 40 to achieve the same effect in Ge/Si(001) at the higher temperature, all other 
things being equal. That, of course, they are not, and factors of 40 in temperature are 
extreme extrapolations. Nonetheless, the simple calculations of the energy landscape 
at the edge of QDs that have so far been performed give energies ca. 0.2-0.4 eV 
(Drucker 1993; Barabasi 1997; Enomoto 2001). On the other hand, the binding energy 
of dimer pairs, expected to be below 0.35 eV for Ge2-Ge2 on Si(001), becomes less 
than 10 meV on dividing by 40, in contrast to a binding energy of the order of 
0.3 eV expected for Cu adatom pairs. For example, Ovesson et al. (2001) have been 
interested in similar phenomena to those discussed in ? 4, and they calculated that 
Eb = 0.26 eV for Cu pairs on Cu(111). There are clearly other possible bases for 
comparison between such systems, which can be explored in future work. 

There are also analogies between silicide nucleation on Si and Ge(111) and metal- 
metal growth, e.g. Ag/Ag(111) and Ag/Ag(2ML)/Pt(lll), where interface layers 
show misfit dislocation arrays, which act as a barrier to diffusion, and faulted or 
unfaulted halves of the surface cell, which act as preferential nucleation sites (Brune 
et al. 1998). The main difference between these widely different systems seems to be 
the large difference in critical nucleus size or, equivalently, the tendency to Ostwald 
ripening during deposition and annealing, due to the relative difference of the lateral 
pair binding energy of the diffusing species. These are all examples of quantities 
which can be easily varied, and explored rapidly with an RE treatment, and they 
represent cases which may merit further study. 
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Discussion 

P. DOBSON (Department of Engineering Science, University of Oxford, UK). Per- 
haps this is an unfair question, but as a representative of both the epitaxial layer and 
the quantum dot community: what have epitaxial quantum dots to offer to compete 
with the colloidal route? For example, epitaxial quantum dots are badly defined in 
size, shape, composition and spacing, etc., whereas the colloids are better in all these 
ways. 

J. A. VENABLES. This type of question arises as soon as one starts to think about 
technological applications in the medium term. There may always be another inno- 
vation, developed via a completely different route, which can blow one away in the 
marketplace! But that innovation may have other disadvantages, and most of the 
time we scientists are testing out our own approaches, in a relatively far-from-market 
environment, and pursuing our own hunches. 

In particular, an obvious advantage of the epitaxial approach is that integration 
with bulk silicon device and interconnect technology is standard; doubtless those 
who advocate the colloid approach are working hard to overcome any limitations 
in this regard. But we should emphasize that the uniformity achieved is impressive, 
particularly in stacked multilayer QDs (e.g. Raab et al. 2002), and there is no indi- 
cation that the community is at the end of that road. Another technological question 
is 'how uniform is uniform enough?' We would expect the answer to depend on the 
application envisaged, but it seems that the present devices are quite good enough 
for light-emitting diodes and the best are good enough for lasers. 

R. A. OLIVER (Department of Materials, University of Oxford, UK). You discussed 
kinetic models that explored the growth of QDs on semiconductor surfaces. How- 
ever, you also mentioned that in heteroepitaxial semiconductor growth a quasi- 
equilibrium exists at least in two dimensions. Would the you like to comment on 
the thermodynamic equilibrium models of Stranski-Krastanov (S-K) growth devised 
by Shchukin and others? Are these models inherently in tension with the kinetic 
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models, or are both useful abstractions, which could be used in tandem to further 
our understanding? 

J. A. VENABLES. Crystal nucleation and growth are out-of-equilibrium phenomena, 
but within the models there is interplay between thermodynamic and kinetic reason- 
ing. Often the thermodynamic (or statistical mechanical) reasoning is applied in a 
spatially or temporally localized sense, so that one can approximate the situation by 
a local equilibrium, within which the rates of forward and back reactions are almost 
equal. For example, the reactions on the left-hand side of figure 1 are in local equi- 
librium in this sense, enabling us to write ni in terms of ni and the cluster binding 
energy Ei in equation (2.2). 

There are many current attempts, by Barabisi, Drucker, Shchukin and others, to 
incorporate strain into the description of S-K growth, and to investigate the effect 
of strain on the overall kinetics. Barabisi and Shchukin have perhaps gone furthest 
in the direction of claiming that strain produces equilibrium structures, but others 
hotly dispute equilibrium arguments. These other authors (Drucker 1993; Ross et 
al. 1998) have maintained that these are growth effects, where Ostwald ripening 
(coarsening) may be slowed down by strain, but that we are dealing with at most 
local energy minima along a long-term annealing path. Our feeling is that the latter 
view is correct, but until such arguments get sorted out they can generate a lot of 
heat as well as light, and that is where we are right now; maybe the really crucial 
experiment still needs to be done? 

A. M. STONEHAM (Department of Physics and Astronomy, University College Lon- 
don, UK). Could you comment on the role of long-range forces? For non-conducting 
substrates, electrostatic forces (and energies) are quite big, and one would expect 
them to affect observed dot pair-distribution functions (indeed for elastic interaction 
these have been seen dynamically). 
J. A. VENABLES. There are certainly several types of interaction potentials that 
have long-range tails, and not only for non-conducting substrates. For example, the 

Cu/Cu(11l) case described in ? 4 of the paper is thought to show oscillatory long- 
range surface state interactions, which vary as r-2 at large r. The Friedel oscillations 
give preferred-pair separations, which are seen in STM images taken at low temper- 
atures. As you suggest, elastic interactions, and especially electrostatic interactions 
in, or on, insulators, are often important. For example, ionic interactions between 
charged point defects and charged adatoms might be expected to have potential tails 
varying as r-1. However, the importance of such potential tails will vary markedly, 
depending on the experimental temperature. The Cu/Cu(lll) and other 'smooth 
surface' phenomena could only be demonstrated by operating at a suitably low tem- 
perature, such that the barrier energies are a substantial fraction of kT. 
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